Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Đường thẳng đi qua 2 điểm A và B có vectơ chỉ phương là suy ra tọa độ vectơ pháp tuyến là ( 4;3) .
Suy ra phương trình AB: 4( x-3) + 3( y+ 1) = 0 hay 4x+ 3y -9=0
Do M nằm trên Ox nên M( x; 0)
Do d(M; AB)=1 nên
Gọi \(M\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-1-x;4\right)\\\overrightarrow{MB}=\left(1-x;-2\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}=\left(1-3x;0\right)\)
\(\Rightarrow\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\sqrt{\left(1-3x\right)^2}\ge0\)
Dấu "=" xảy ra khi \(x=\frac{1}{3}\Rightarrow M\left(\frac{1}{3};0\right)\)
Gọi \(P\left(0;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PA}=\left(-1;4-y\right)\\\overrightarrow{PB}=\left(1;-2-y\right)\\\overrightarrow{PC}=\left(3;4-y\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{PA}+2\overrightarrow{PB}-4\overrightarrow{PC}=\left(-11;5y-16\right)\)
\(\Rightarrow\left|\overrightarrow{PA}+\overrightarrow{PB}-4\overrightarrow{PC}\right|=\sqrt{11^2+\left(5y-16\right)^2}\ge11\)
Dấu "=" xảy ra khi \(5y-16=0\Rightarrow y=\frac{16}{5}\Rightarrow P\left(0;\frac{16}{5}\right)\)
Gọi \(M\left(a;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(a-2;3\right)\\\overrightarrow{BM}=\left(a-1;-4\right)\end{matrix}\right.\)
\(\Rightarrow\frac{a-2}{a-1}=\frac{3}{-4}\Rightarrow a=\frac{11}{7}\Rightarrow M\left(\frac{11}{7};0\right)\)