Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A= 2+22+23+…+22004
A=2(1+2)+23(1+2)+…+22003(1+2)
Vậy A chia hết cho 3.
A=2(1+2+22) + 24(1+2+22)+…+22002(1+2+22).
Vậy A chia hết cho 7.
A=2(1+2+22+23)+25(1+2+22+23)+…+22001 (1+2+22+23)
Vậy A chia hết cho 15.
1)A=3+32+33+...+32008
A=(3+32)+(33+34)+...+(32007+32008)
A=3(1+3)+33(1+3)+...+32007(1+3)
A=3.4+33.4+...+32007.4
A=4(3+....+32007) chia hết cho 4
1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)
A= 3.4+3^3.4+...+3^2007 .4
A= 4(3+3^3+...+3^2008)=>ĐPCM
2, theo đề bài :a+b chia hết cho 2
ta có : a+3b=a+b+2b
vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM
\(5+5^3+5^5+5^7+..+5^{27}\)
\(=\left(5+5^3\right)+5^4\left(5+5^3\right)+...+5^{24}\left(5+5^3\right)\)
\(=130+130\cdot5^4+...+130\cdot5^{24}\)
\(=130\left(1+5^4+..5^{24}\right)\)
Vì \(130⋮26\Rightarrow5+5^3+5^5+...+5^{27}⋮26\left(đpcm\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2008}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{2005}+2^{2006}+2^{2007}+2^{2008}\right)\)
\(A=30+...+30\cdot2^{2004}\)
\(A=30\left(1+...+2^{2004}\right)⋮30\)
A = 2 + 22 + 23 + 24 + ... + 22007 + 22008
A = (2 + 22 + 23 + 24) + ... + (22005 + 22006 + 22007 + 22008)
A = 30 + ... + 22004.(2 + 22 + 23 + 24)
A = 30 + ... + 22004.30
A = 30.( 1 + ... + 22004) \(⋮\)30