K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

Tính 3A, sau đó trừ A

29 tháng 8 2018

a. Ta có 3A= 3+3^2+...+3^31

Vậy 3A-A=2A= 3-1-3 +3^31=> A=\(\frac{3^{31}-1}{2}\)

b. A=(3.3^30-1)/2= (3.27^10-1)/2= [3.(27^2)^5-1]/2 = \(\frac{3x729^5-1}{2}\)

Ta co \(729^5\) có số cuối là 9 => 3.\(729^5\)có số cuối là 7, -1 đi có số cuối là 6, chia 2 có số cuối là 3

Vậy A có số cuối là 3 => A không thể là 1 số chính phương

c. A-1= 3+ 3^2+3^3+3^4+3^5+3^6+....+3^25+3^26+3^27+3^28+3^29+3^30 

(Từ 3 đến 3^30 có 30 số, chia làm 6 nhóm)

=3(1+3+9+27+81+243) + 3^6 (1+3+..+243) +....+ 3^24(1+3+...+243)

=364 (3+3^6+...+3^24) Ta có 364 chia hết 7 vậy (A-1) chia hết 7

11 tháng 12 2014

bài 1 

a,có

b,ko là chính phương

14 tháng 12 2016

lay o toan boi a

 

15 tháng 2 2016

Ta có:

Ư(13)={1;13}