K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Ta có : \(a=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) , b = 2n+1

Gọi ƯCLN(a,b)=d (\(d\ge1\))

Ta có : \(\begin{cases}\frac{n\left(n+1\right)}{2}⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}n\left(n+1\right)⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}4n^2+4n⋮d\\4n^2+4n+1⋮d\end{cases}\)

=> \(\left(4n^2+4n+1\right)-\left(4n^2+4n\right)⋮d\) hay \(1⋮d\)

=> \(d\le1\) mà \(d\ge1\Rightarrow d=1\)

=> đpcm

17 tháng 8 2016

Vì ước chung của 2 số đó bằng 1

27 tháng 1 2017

Gọi d là ước chung nếu có của cả a và b 
=> a chia hết cho d nên 8a cũng chia hết cho d 
đồng thời : b chia hết cho d nên b2 cũng chia hết cho d ( b2 ) 
=> ( b2 - 8.a ) chia hết cho d 
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n2 + n ) /2 
và b2 = ( 2n + 1 )2 = 4n2 + 4n + 1 
=> : (b2 - 8a ) = ( 4n2 + 4n +1 ) - ( 4n2 + 4n ) = 1 
Vậy : ( 8a - b2 ) chia hết cho d <=> 1 chia hết cho d => d = 1 
NÊN ước chung của a và b là 1 nên a và b nguyên tố cùng nhau ( đpcm )

27 tháng 1 2017

cảm ơn.Chúc bạn dầu năm vui vẻ.

16 tháng 3 2016

minh ko hieu

26 tháng 2 2017

Ta có: a = 1+2+3+...+n

             = (n+1)(n-1+1)

             = (n+1)n

Gọi UCLN(n(n+1),2n+1) = d

=> n(n+1) chia hết cho d

 và    2n+1 chia hết cho d

Không biết nữa

13 tháng 1 2018

Vay a va b nguyen to cung nhau

10 tháng 2 2020

Bài giải

Ta có: a = 1 + 2 + 3 + 4 +...+ n;   b = 2n + 1 (n \(\inℕ\);   n > 2)

Suy ra a = \(\frac{n\left(n+1\right)}{2}\)(a chẵn vì n > 2);   b = 2n + 1 (b lẻ)

Vì n > 2

Nên a > 2 và b > 2

Mà a chẵn và b lẻ

Suy ra a không chia hết cho b và ngược lại

Vậy a và b là 2 số nguyên tố cùng nhau.