Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần lập là \(\overline{a_1a_2a_3a_4}\)\(=m\in A\), \(a_i\ne a_j\)
a) a1\(\ne\)0\(\Rightarrow\)a1 có 9 cách chọn
Xếp 3 chữ số trong 9 chữ số còn lại có \(A_9^3\)
Có tất cả 9*\(A_9^3\)số cần lập
b)Số chẵn a4\(\in\)\(\left\{0,2,4,6,8\right\}\)
+ Với a4=0 có 1 cách chọn
Xếp 3 số trong A\\(\left\{0\right\}\)vào 3 vị trí còn lại có \(A_9^3\)
Có 1*\(A_9^3\)số cần lập.
+Với a4\(\in\)\(\left\{2,4,6,8\right\}\) có 4 cách chọn
Chọn a1 có 8 cách trong A\(\backslash\left\{0,a_4\right\}\)
Chọn 2 trong X\(\backslash\left\{a_1,a_4\right\}\) vào 4 vị trí còn lại có \(A_8^2\) số cần lập
có 4*8*\(A_8^2\)
vậy có tất cả 2269 số cần lập( cộng hai trường hợp trên).
Hàng nghìn có 9 cách chọn
Hàng trăm có 8 cách chọn
Hàng chục có 7 cách chọn
Hàng đơn vị có 6 cách chọn
Vậy lập được \(9.8.7.6=3024\) số thỏa yêu cầu đề
a)
Gọi abcde là 5 chữ số khác nhau cần tìm
a-9cc
b \ {a} - 8cc
...
e \ {a,b,c,d} - 5cc
<=> 9*8*7*6*5=9P5=15120 số
b)
e {2,4,6,8} - 4cc
a \ {e} - 8cc
b \ {a,e} - 7cc
c \ {a,b,e} - 6cc
d \ {a,b,c,e} - 5cc
<=> 4 * 8P4 = 6720 số
a.
Có \(A_9^5=15120\) cách
b.
Gọi số đó là \(\overline{abcde}\) \(\Rightarrow e\) chẵn \(\Rightarrow e\) có 4 cách chọn
Bộ abcd có \(A_8^4=1680\) cách
tổng cộng: \(4.1680=...\) cách
Từ các chữ số {0, 3, 4, 5, 6, 7} có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau ?
Số cần tìm có dạng \(\overline{abcd}\left(a,b,c,d\in\left\{0;3;4;5;6;7\right\}\right)\)
TH1: \(d=0\)
a có 5 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(3.4.5=60\) cách lập.
TH2: \(d\ne0\)
d có 2 cách chọn
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(2.3.4.4=96\) cách lập.
Vậy có \(96+60=156\) cách lập.
a)\(A_9^4\)
b)Gọi số cần lập là \(\overline{a_1a_2a_3a_4}=m\)\(\in A\),\(a_i\ne a_j\)
Số cần lập là số chẵn nên a4\(\in\left\{2,4,6,8\right\}\) \(\Rightarrow\) có 4 cách chọn a4
Chọn 3 trong 8 chữ số của A\\(\left\{a_1\right\}\)\(\Rightarrow\)có \(A_8^3\)
có tất cả \(4\cdot A_8^3\)số cần lập