K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

A= \(\frac{1}{2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)

\(\Rightarrow\) 2A = 1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(\Rightarrow\) 2A - A = ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\) ) -

( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\))

\(\Rightarrow\) A = 1 - \(\frac{1}{2^{100}}\) < 1

Vậy: A < 1
\(\frac{1}{2}\)

24 tháng 6 2019

B= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

= 2. \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

= 2. ( \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\) )

= 2. \(\left(\frac{1}{1}-\frac{1}{100}\right)\) = \(\frac{99}{50}\)

\(\Rightarrow\) B = \(\frac{99}{50}\) < \(\frac{100}{50}\) = 2

Vậy: B < 2

23 tháng 4 2017

a) 1/1.2 + 1/2.3 + 1/3.4 + ....... + 1/99.100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/99 - 1/100

= 1 - 1/100

= 99/100 < 1 nên 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100 < 1 (ĐPCM)

23 tháng 4 2017

a)1-1/2+1/2-1/3+1/3-1/4+......+1/99-1/100

1-1/100=99/100<1

cho mk nha ^^

6 tháng 5 2019

Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha

6 tháng 5 2019

a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

                                                                                   \(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)

=> đpcm

Study well ! >_<

26 tháng 2 2020

Mình gõ câu a bị lỗi nha , thực chất câu a là

a) Tìm các số tự nhiên x, y biết : 2xy + x + 2y = 13

a)Bạn làm nha vì bài này dễ rồi

b)+)Ta có:A=1.2+2.3+3.4+..................+99.100

=>3A=1.2.3+2.3.3+3.4.3+.................+99.100.3

=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+................+99.100.(101-98)

=>3A=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...................-98.99.100+99.100.101

=>3A=99.100.101

=>A=\(\frac{99.100.101}{3}=333300\)

+)Ta lại có:B=12+22+32+..................+992

=>B=1.1+2.2+3.3+............+99.99

=>B=1.(2-1)+2.(3-1)+3.(4-1)+..........+99.(100-1)

=>B=1.2-1+2.3-2+3.4-3+........................+99.100-99

=>B=(1.2+2.3+3.4+............+99.100)-(1+2+3+..............+99)

Đặt N=1.2+2.3+3.4+....................+99.100

=>3N=1.2.3+2.3.3+3.4.3+.................+99.100.3

=>3N=1.2.3+2.3.(4-1)+3.4.(5-2)+................+99.100.(101-98)

=>3N=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...................-98.99.100+99.100.101

=>3N=99.100.101

=>N=\(\frac{99.100.101}{3}=333300\)

Đặt M=1+2+3+..............+99(có 99 số hạng)

=>M=\(\frac{\left(1+99\right).99}{2}=4950\)

+)Ta thấy A-B=333300-(333300-4950)

=>A-B=333300-333300+4950

=>A-B=4950\(⋮\)50

Vậy A-B\(⋮\)50

Chúc bn học tốt

3 tháng 1 2018

Chị dùg cách tính tổng đi

1. Tìm dãy cách đều bao nhiêu

2. Từ công thức tính tổng rồi suy ra

11 tháng 2 2022

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\).

b. Có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\).

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}< 1\)

12 tháng 6 2017

\(2b)\)

Đặt :


\(S=1+4+4^2+4^3+4^4....................+4^{100}\)

\(4S=4\left(1+4+4^2+4^3+4^4+.............+4^{100}\right)\)

\(4S=4+4^2+4^3+4^4+4^4+.......+4^{101}\)

\(4S-S=\left(4+4^2+4^3+4^4+4^5+.......+4^{101}\right)-\left(1+4+4^2+4^3+4^4+...............+4^{100}\right)\)

\(3S=4^{101}-1\)

\(S=\dfrac{4^{101}-1}{3}\)

a: B=1-1/2+1/2-1/3+...+1/2020-1/2021

=1-1/2021=2020/2021

b:

1/2^2+1/3^2+...+1/2021^2>0

=>A>1

1/2^2+1/3^2+...+1/2021^2<1-1/2+1/2-1/3+...+1/2020-1/2021=2020/2021

=>A<2020/2021+1

mà A>1

nên 1<A<1+2020/2021

=>A ko là số nguyên