Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(2A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1< 2^{2018}=B\)
Vậy A<B
Ta có : \(A=1+2+2^2+...+2^{2017}\)(1)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2018}\)(2)
Lấy (2) trừ (1) ta có :
\(\Rightarrow A=2^{2018}-1\)
\(\Rightarrow A< B\). Vì \(B=2^{2018}\)
A = 1+2+22+23+.....+22017
2A = 2(1+2+22+23+.....+22017) = 2+22+23+24+.....+22018
2A - A = 2+22+23+24+.....+22018- (1+2+22+23+.....+22017)
=> A = 2+22+23+24+.....+22018-1-2-22-23-.....-22017
A =22018-1 < 22018
Vậy A < B
\(2A=2.\left(1+2+2^2+...+2^{2018}\right)\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=2+2^2+...+2^{2019}-\left(1+2+...+2^{2018}\right)\)
\(A=2^{2019}-1< 2^{2019}< 2^{2019}+1\)
\(=>A< B\)
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
Suy ra \(A< B\).
A=1+2+22+23+...+22017 (1)
2A=2+22+23+24+...+22018 (2)
Lấy (2) - (1) ta có:
2A - A=(2+22+23+24+...+22018)-(1+2+22+23+...+22017)
A=2+22+23+24+...+22018-1-2-22-23-...-22017
A=22018-1
Mà B=22018-1 =>A=B
b) ta có: B=20172
B=(2016+1).2017=2016.2017+2017
A=2016.2018
A=2016.(2017+1)=2016.2017+2016
Vì 2016<2017=>A<B
mình nhé
\(A=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2018^2}\)
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2017\cdot2018}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}< \frac{3}{4}\)