Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2+1/3+..+1/2019 < 1>
A= 1+1/2+1/3+..+1/2019 < 1>
A=1+1/2+1/3+..+1/2019 <1>
A=1+1/2+1/3+..+1/2019 <2018>
Vì 2018/2019 <1>
nên A=1/2+1/3+..+1/2019<1>
=> A=1/2+1/3+..+1/2019 không phải là số tự nhiên.
Mình chưa hiểu cách bạn làm với dấu <1> cho lắm.
Theo mình hiểu thì bạn đang chứng minh $A< 1$ nên $A$ không phải số tự nhiên. Mà điều này thì sai vì $A=1+(\frac{1}{2}+\frac{1}{3}+...)$ hiển nhiên lớn hơn $1$.
a) Giả sử 3 số đó là a,a+1,a+2
Tổng của chúng : a + a + 1 + a + 2 = 3a + 3 chia hết cho 3 (đpcm)
C2: Nếu a chia hết cho 3 thì a có dạng 3k và a +1 = 3k + 1
a + 2 =3k+2
a + a + 1 + a + 2 = 3k + 3k+ 1 +3k+2 cũng tương tự với trường hợp a : 3 dư 1 và dư 2
b) Gọi 4 số đó là a,a+1,a+2,a+3
a + a + 1 + a + 2 + a + 3 = 4a + 6 không chia hết cho 4
Ta có
1/2 =1/1.2
1/3 > 1/2 .3
1/4 > 1/3.4
......
1/50 > 1/49.50
A >1/1.2+1/2.3+1/3.4+...+1/49.50
A>1/1-1/2+1/2-1/3+...+1/49-1/50
A>1/1-1/50=49/50
vậy a<1
a có thể bằng 1 mà bn ê