Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\underbrace{111...1}_{2019}=a\Rightarrow 9a+1=1\underbrace{00...000}_{2019}\)
Do đó:
\(AB+1=\underbrace{111....1}_{2019}(1\underbrace{000...00}_{2019}+5)+1\)
\(=a(9a+1+5)+1=9a^2+6a+1=(3a+1)^2\)
Vậy $AB+1$ là một số chính phương.
Ta có:
A + B + 1 = 1111...1 + 4444...4 + 1
(2n c/s 1) (n c/s 4)
= 1111...1000...0 + 1111...1 + 1111...1.4 + 1
(n c/s 1)(n c/s 0) (n c/s 1) (n c/s 1)
= 1111...1.1000...0 + 1111...1 + 1111...1.4 + 1
(n c/s 1) (n c/s 0) (n c/s 1) (n c/s 1)
= 1111...1.1000...05 + 1
(n c/s 1) (n-1 c/s 0)
= 1111...1.3.333...35 + 1
(n c/s 1) (n-1 c/s 3)
= 3333...3.333...35 + 1
(n c/s 3)(n-1 c/s 3)
= 3333...3.333...34 + 3333...3 + 1
(n c/s 3) (n-1 c/s 3) (n c/s 3)
= 3333...3.333...34 + 3333...34
(n c/s 3)(n-1 c/s 3) (n-1 c/s 3)
= 3333...342 là số chính phương (đpcm)
(n-1 c/s 3)