K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Ta có : \(\frac{1}{100^2}< \frac{1}{99.100}\)

            \(\frac{1}{101^2}< \frac{1}{100.101}\)

            \(\frac{1}{102^2}< \frac{1}{101.102}\)

             ...

           \(\frac{1}{198^2}< \frac{1}{197.198}\)

           \(\frac{1}{199^2}< \frac{1}{198.199}\)

\(\Rightarrow G< \frac{1}{99.100}+\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{197.198}+\frac{1}{198.199}\)

\(\Rightarrow G< \frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{198}-\frac{1}{199}\)

\(\Rightarrow G< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)(1)

Ta có : \(\frac{1}{100^2}>\frac{1}{100.101}\)

            \(\frac{1}{101^2}>\frac{1}{101.102}\)

            \(\frac{1}{102^2}>\frac{1}{102.103}\)

             ...

            \(\frac{1}{199^2}>\frac{1}{199.200}\)

\(\Rightarrow G>\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{199.200}\)

\(\Rightarrow G>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{199}-\frac{1}{200}\)

\(\Rightarrow G>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)(2)

Từ (1) và (2)

\(\Rightarrow\frac{1}{200}< G< \frac{1}{99}\)

Vậy \(\frac{1}{200}< G< \frac{1}{99}\).

6 tháng 4 2018

\(A< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)

=> \(A< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)

Lại có: 

\(A>\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)

=> \(A>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)

=> 1/100 < A < 1/99

27 tháng 5 2017

a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)

\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)

b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)

27 tháng 5 2017

a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
    = \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
    = \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)                                                          
    = \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
    = \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ... 

30 tháng 3 2018

\(A=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\)

=> \(A>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

Lại có: \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{100}{100}=1\)

=> \(\frac{7}{12}< A< 1\)

21 tháng 3 2015

1/Bạn thấy trong phép chia thì phép nào có số chia lớn hơn thì thương nhỏ hơn, vì vậy ps có mẫu lớn hơn thì nhỏ hơn.

2/ Ta có: Số số hạng của tổng là 200

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(...\)

\(\frac{1}{199}>\frac{1}{200}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}>\frac{1}{200}+...+\frac{1}{200}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}>\frac{1}{200}+...+\frac{1}{200}\)(mỗi bên đều 200 số hạng)

\(\Rightarrow A>\frac{1}{200}.200\) 

\(\Rightarrow A>1\)