Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Chứng mình chia hết 24
Tách: 24=8.3
⇒3 (1)
8 (Vì: 0088) (2)
Từ (1) và (2) ⇒A24 Vì: (3,8)
⇒đpcm
3 chữ số tận cùng của M là 008 chia hết cho 8
=> M chia hết cho 8
Tổng các chữ số của M laf12 chia hết cho 3
=> M chia hết cho 3
Mà (3;8)=1
=> M chia hết cho 3.8=24
M ko phải số chính phương vì tận cùng là 8, trong khi số chính phương tận cùng ko là 8
Ta có : A có tổng các chữ số bằng 12 ,do đó A chia hết cho 3. (1).
Lại có A có chữ số tận cùng là 008 do đó A chia hết cho 8 (2).
Từ (1) và (2) : ta có A chia hết cho 3 và 8 mà (3;8)=1 nên A chia hết cho 24
Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương
Ta có : A có tổng các chữ số bằng 12 ,do đó A chia hết cho 3. (1).
Lại có A có chữ số tận cùng là 008 do đó A chia hết cho 8 (2).
Từ (1) và (2) : ta có A chia hết cho 3 và 8 mà (3;8)=1 nên A chia hết cho 24
Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
Ai trả lời được cho tớ bít nhé iu mọi người nhìu!
Chả lời đúng tui t i c k (Ghép các chữ ấy lại)
a, M = 5 + 5^2 + 5^3 + ... + 5^80
M = (5 + 5^2) + (5^3 + 5^4) + ... + (5^79 + 5^80)
M = 30 + 30.5^2 + ... + 30.5^78
M = 30(1 + 5^2 + ... + 5^78) vi 30 ⋮ 6
=> M ⋮ 6
M = 5 + 52 + 53 + ... + 580
M = (5 + 52) + (53 + 54) + ... + (579 + 580)
M = 30 + 30.52+ ... + 30.578
M = 30(1 + 52 + ... + 578) vì 30 ⋮ 6
=> M ⋮ 6