K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

Vì n+1 và 2n+1 là số chính phương nên ta đặt n+1=k2 và 2n+1=m2     (k,m \(\in\)N)

Ta có: 2n+1 là số lẻ => m2 là số lẻ =>m là số lẻ

=>m=2a+1      (a \(\in\) N)

=>m2=(2a+1)2=(2a)2+2.2a.1+12

                    =4a.a+4.a+1

                  =4a(a+1)+1

=>n=\(\frac{2n-1}{2}=\frac{4a\left(a+1\right)+1-1}{2}=\frac{4a\left(a+1\right)}{2}=2a\left(a+1\right)\)

=>n là số chẵn

=>n+1 là số lẻ => n+1=2b+1              (b \(\in\)N)

=>k2=(2b+1)2=(2b)2+2.2b.1+12

                    =4b.b+4b+1

                   =4b(b+1)+1

=>n=4b(b+1)+1-1=4b(b+1)

Ta có: b(b+1) là tích 2 số tự nhiên liên tiếp

=>4b(b+1) chia hết cho 2.4=8          (1)

Ta có: k2+m2=(n+1)+(2n+1)=3n+2=2      (mod 3) 

Mà k2 chia 3 dư 0 hoặc 1; m2 chia 3 dư 0 hoặc 1

=>Để k2+m2 =2        (mod 3)

thì k2=1      (mod 3)

và m2=1       (mod 3)

=>m2-k2 chia hết cho 3

=>(2n+1)-(n+1)=n chia hết cho 3

Vậy n chia hết cho 3              (2)

Từ (1) và (2) và (8;3)=1

=>n chia hết cho 8.3=24    (đpcm)

10 tháng 3 2020

Ai giúp mik với, thank you

10 tháng 3 2020

THAM KHẢO LICK NÀY NHA :

https://h.vn/hoi-dap/question/783892.html

11 tháng 4 2015

P = a(a+1) [(a+ 2) + (a - 1)] = a(a+1)(a+2) + a(a+1)(a-1)

nhận xét: a(a+1)(a+2); a(a+1)(a-1) đều là các tích của 3 số nguyên liên tiếp nên chúng chia hết cho 6

=> P chia hết cho 6

11 tháng 2 2017

Giải:

P = a . (a + 1) . [(a + 2) + (a - 1)]

P = a . (a + 1) . (a + 2) + a . (a + 1) . (a - 1)

Ta có nhận xét như sau: a . ( a + 1) . (a + 2); a . (a + 1) . (a - 1) đề là các tích của 3 số nguyên liên tiếp nên chúng sẽ chia hết cho 6.

\(\Rightarrow\)\(⋮\)6.

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước

18 tháng 3 2018

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

18 tháng 3 2018

bạn vào  https://h.vn/hoi-dap/quesion/129628.html