Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA TÁCH 2012 RA THÀNH 2012 CON SỐ 1.LẤY (1 + 2012/2) + (1 + 2011/3) + (1 + 2010/4); +...+ (1 + 1/2013) Ở MẪU, TA ĐƯỢC 2014/2 + 2014/3 +...+ 2014/2013(Ở MẪU).ĐẶT THỪA SỐ CHUNG 2014 RA NGOÀI TA SẼ ĐƯỢC 2014(1/2 + 1/3 +...+ 1/2013)(Ở MẪU).LẤY TỬ CHIA MẪU TA SẼ CÒN LẠI 1/2014. VẬY A=1/2014
xét mẫu ta được
(2012/2+1)+(2011/3+1)+...+(1/2013+1)
=2014/2+2014/3+...+2014/2013
=2014(1/2+1/3+...+1/2013) (1)
mà tử bằng 1/2+1/3+1/4+..+1/2013 (2)
(1),(2)=> A=1/2014
xét mẫu
2012+2012/2+2011/3+...+1/2013
=(1+1+1+…+1) + 2012/2+2011/3+...+1/2013
2012 số hạng
=(1 + 2012/2) + (1 + 2011/3) + ….+ (1+1/2013)
=2014/2 + 2014/3 + …. + 2014/2013
=2014 x (1/2 + 1/3 + … + 1/2013)
=))
(1/2+1/3+1/4+...+1/2013)/(2012+2012/2+2011/3+...+1/2013) =
(1/2+1/3+1/4+...+1/2013)/ 2014 x (1/2+1/3+1/4+...+1/2013) = 1/2014
1/2+1/3+1/4+..+1/2013
2012+2012/2+2011/3+...+1/2013
=1/2+1/3+1/4+...+1/2013
(2012/2+1)+(2011/3+1)+...+(1/2013+1)
=1/2+1/3+1/4+...+1/2013
2014/2+2014/3+...+2014/2013
=1/2+1/3+1/4+...+1/2013
2014(1/2+1/3+...+1/2013)
=1/2014
=1/2014 còn đâu tự làm nhé!!!!!!!!!!!!!^^^^^^^^^^^@@@@@@@########$$$$$$*********
Mẫu số của A \(=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)
\(=\left(1+1+...+1\right)+\left(\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\right)\)
(2012 số 1) (2011 phân số)
\(=\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
\(=\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
\(=2013.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
=> \(A=\frac{1}{2013}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(\Rightarrow A=\frac{1}{2013}\)
Vậy \(A=\frac{1}{2013}\)
Xét mẫu số ta có: \(2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)
=\(2012+\left(\frac{2014-2}{2}+\frac{2014-3}{3}+...+\frac{2014-2013}{2013}\right)\)
= \(2012+\left(\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2013}\right)-\left(\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+...+\frac{2013}{2013}\right)\)
= \(2012+2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)-2012\)
= \(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)\)
\(\Rightarrow A=\frac{1}{2014}\)