Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.
Xét:
`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`
`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`
`=>A+B>2`
Mà `1 2013/2014<2`
`=>A+B>1 2013/2014`
Bài 1:
a: \(A=\left(-\dfrac{1}{5}\right)^{33}:\left(-\dfrac{1}{5}\right)^{32}=\dfrac{-1}{5}\)
c: \(C=\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
Theo bài ra, ta có: \(B=\dfrac{2018}{1}+\dfrac{2017}{2}+\dfrac{2016}{3}+...+\dfrac{1}{2018}\)
\(B=\left(\dfrac{2018}{1}+1\right)+\left(\dfrac{2017}{2}+1\right)+\left(\dfrac{2016}{3}+1\right)+...+\left(\dfrac{1}{2018}+1\right)-2018\)
\(B=2019+\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}-2018\)
\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\left(2019-2018\right)\)
\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+1\)
\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\dfrac{2019}{2019}\)
\(B=2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)\)
Khi đó:\(\dfrac{B}{A}=\dfrac{2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}}\)
\(\Rightarrow\dfrac{B}{A}=2019\), là 1 số nguyên.
Vậy \(\dfrac{B}{A}\) là số nguyên.
Giải:
Ta có:
\(\dfrac{A}{B}=\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{4026}}{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4025}}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2046}\right)}{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}{1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{4025}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{4026}}{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}\)
\(\Rightarrow\dfrac{A}{B}=1+\dfrac{\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2046}}{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}\)
Dễ thấy \(\dfrac{A}{B}>1\)
Mà \(\dfrac{2013}{2014}< 1\)
\(\Rightarrow\dfrac{A}{B}>1\dfrac{2013}{2014}\)