K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Ta có :

M = ( a + b + c - d ) + ( a + b - c + d ) + ( a - b + c + d ) + ( -a + b + c + d )

= a + b + c - d + a + b - c + d + a - b + c + d - a + b + c + d 

= ( a + a + a - a ) + ( b + b - b + b ) + ( c - c + c + c ) + ( - d + d + d + d )

= 2a + 2b + 2c + 2d 

= 2 . ( a + b + c + d )

Thay a = 1 , b = 10 , c = 100 và d = 1000 vào biểu thức M có :

M = 2 .( 1 + 10 + 100 + 1000 )

M = 2 . 1111

M = 2222 

Vậy M = 2222 khi a = 1 , b = 10 , c = 100 và d = 1000 .

Học tốt

10 tháng 8 2020

\(M=\left(a+b+c-d\right)+\left(a+b-c+d\right)+\left(a-b+c+d\right)+\left(-a+b+c+d\right)\)

\(=a+b+c-d+a+b-c+d+a-b+c+d-a+b+c+d\)

\(=\left(a+b+c+d\right).3-\left(a+b+c+d\right)=2\left(a+b+c+d\right)\)

\(=2\left(1+10+100+1000\right)=2.1111=2222\)

22 tháng 7 2019

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}.\)

\(\Rightarrow\hept{\begin{cases}3a=b+c+d\\3b=a+c+d\end{cases};\hept{\begin{cases}3c=a+b+d\\3d=a+b+c\end{cases}}}\)

Trừ vế theo vế ta có :\(\hept{\begin{cases}3\left(a-b\right)=b-a\\3\left(b-c\right)=c-b\\3\left(c-d\right)=d-c\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a-b=b-a=0\\b-c=c-b=0\\c-d=d-c=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}}\)=>a=b=c=d

\(\Rightarrow M=1+1+1+1=4\)

22 tháng 7 2019

Giải : Ta có: \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{b+c+a}\)

=> \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{b+c+a}{d}\)

=> \(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{b+c+a}{d}+1\)

=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\) => a = b = c = d

Khi đó, ta có: M = \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

                       = \(\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

                        = \(1+1+1+1=4\)

29 tháng 12 2016

\(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

\(\Rightarrow\frac{2016a}{a}+\frac{b+c+d}{a}=\frac{2016b}{b}+\frac{a+c+d}{b}=\frac{2016c}{c}+\frac{a+b+d}{c}=\frac{2016d}{d}+\frac{a+b+c}{d}\)

\(\Rightarrow2016+\frac{b+c+d}{a}+1=2016+\frac{a+c+d}{b}+1=2016+\frac{a+b+d}{c}+1=2016+\frac{a+b+c}{d}+1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

\(Khiđó:M=1+1+1+1=4\)

22 tháng 11 2021

Answer:

Có vài chỗ mình sửa lại đề nhé!

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)

\(\Rightarrow\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{1}{3}\)

\(\Rightarrow3a=b+c+d\)

\(\Rightarrow3b=a+c+d\)

\(\Rightarrow3c=a+b+d\)

\(\Rightarrow3d=a+b+c\)

Ta có: 

\(3a+3b=b+c+d+a+c+d\)

\(\Rightarrow3.\left(a+b\right)=a+b+2c+2d\)

\(\Rightarrow2.\left(a+b\right)=2.\left(c+d\right)\)

\(\Rightarrow a+b=c+d\)

Tương tự: 

\(\Rightarrow b+c=a+d\)

\(\Rightarrow c+d=a+b\)

\(\Rightarrow d+a=b+c\)

Ta có: 

\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

\(=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}\)

\(=1\)

23 tháng 10 2015

Cho biểu thức sau:$\frac{2a+b+c+d}{a}$2 a + b + c + d a bam vao do nho bam lik e :\