K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) A = 1 + 3 + 32 + ... + 3

3A = 3 ( 1 + 3 + 32 + .. + 37)

3A = 3 + 32 + 33 + ...+ 38

b) Vì 3A = 3 + 32 + 33 + ...+38

2A = 38- 1

A = ( 38-1) : 2 (Điều phải chứng minh)

26 tháng 8 2021

a, C = 1 + 4 + 42 + 43 + 44 + 45 + 46

   4C = 4 + 42 + 43 + 44 + 45 + 46 + 47

b, 4C - C = ( 4+42 + 43 + 44 +45 + 46 + 47 ) - ( 1 + 4 + 42 + 43 +44 +45 + 46 )

3C = 47 - 1

=> C = ( 47 - 1 ) : 3

nhớ k đấy nhé

27 tháng 8 2021

ok tui làm nè

a) 3B=3+3^2+3^3+...+3^2007

=>3B-B=2B=3^2007-1

=>B=\(\frac{3^{2007}-1}{2}\)

b)  ở câu này mình có thể áp dụng hằng đẳng thức \(^{a^n}\)\(^{b^n}\) nhưng để những bạn ko chuyên hoặc bthuong hiểu mình sẽ làm cách khác 

ta có \(^{4^2}\) chia 3 dư 1 => \(^{\left(4^2\right)^3}\)chia 3 dư 1 

=>\(^{\left(4^2\right)^3}\).4 chia cho 3 dư 1 nữa 

do đó \(^{4^7}\)-1 sẽ chia hết cho 3

27 tháng 8 2021

dễ mà tự làm ik bạn

27 tháng 8 2021

a, S = 1 + 2 + 22 + 23 + ... + 22017

Ta có : 2S = 2 + 22 + 23 +.... + 22018

Lấy 2S - S ta được : S = 22018 - 1

b, Đặt S = 3 + 32 + 33 + ... + 32017

Ta có : 3S = 32 + 33 + ... + 32018

Lấy 3S - S ta được 2S = 32018 -3 

=> \(S=\frac{3^{2018}-3}{2}\)

c, Đặt S = 4 + 42 + 43 + ... + 42017 

Ta có : 4S = 42 + 43 + ... + 42018

Lấy 4S - S ta được 3S = 42018 - 4 

=> \(S=\frac{4^{2018}-4}{3}\)

26 tháng 8 2021

Trả lời:

a, \(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)

b, Ta có: 

\(2A-A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2+2^2+2^3+...+2^{2007}\right)\)

\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-2^3-...-2^{2007}\)

\(\Rightarrow A=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+...+\left(2^{2007}-2^{2007}\right)+2^{2008}-1\)

\(\Rightarrow A=2^{2008}-1\) (đpcm)

Cho A= 1 + 2^1 + 2^2 + 2^3 + ....... + 2^2007

a) Tính 2A

suy ra 2A= 2 + 2^2 + 2^3 + 2^4 + ....... + 2^2008

b) Chứng minh A = 2^8 - 1

đang nghĩ b 

20 tháng 11 2018

a, 11 + 112 + 113 + ... + 11+ 118

= (11 + 112) + (113 + 114) + ... + (117 + 118)

= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)

= 11.12 + 113.12 + .... + 117.12

= 12(11 + 113 + ... + 117) chia hết cho 12

b, 7 + 7+ 73 + 74

= (7 + 73) + (72 + 74)

= 7(1 + 72) + 72(1 + 72)

= 7.50 + 72.50

= 50(7  + 72) chia hết cho 50

c, 3 + 32 + 33 + 34 + 35 + 36

= (3 + 32 + 33) + (34 + 35 + 36)

= 3(1 + 3 + 32) + 34(1 + 3 + 32)

= 3.13 + 34.13

= 13(3 + 34) chia hết cho 13

8 tháng 10 2018

mình chịu rồi, giúp mình đi các bạn ơi

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi

2 tháng 9 2017

Ta có : \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)

Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)

Nên \(A< B\)

\(\Rightarrow A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\right)\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right)\)

\(\Rightarrow A.B=\frac{1}{201}\)

Vì \(A< B\)

\(\Rightarrow A^2< A.B=\frac{1}{201}\)

\(\Rightarrow A^2< \frac{1}{201}\)

\(\RightarrowĐPCM\)