K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

\(A=1+3+3^2+...+3^{2007}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)

\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)

\(\Rightarrow2A=3^{2008}-1\)

\(\Rightarrow2A+1=3^{2008}\)

7 tháng 8 2016

\(A=1+3+3^2+...+3^{2007}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)

\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)

\(\Rightarrow2A=3^{2008}-1\)

\(\Rightarrow2A+1=3^{2008}\)

Nhớ k cho mk nha!!!

1 tháng 9 2021

a) 536 = 512 (53)12 = 12512; 1124 = 112.12 = (112)12 = 12112

a: \(4^5\cdot8^7=2^{10}\cdot2^{21}=2^{31}\)

b: \(125^5\cdot25^3=5^{15}\cdot5^6=5^{21}\)

10 tháng 10 2017

3A=\(3+3^2+3^3+...+3^{11}\)

3A-A=(\(3+3^2+3^3+...+3^{11}\))-(\(1+3+3^2+...+3^{10}\))

2A=\(3^{11}-1\)

2A+1=\(3^{11}\)

10 tháng 10 2017

lai sai

22 tháng 8 2020

\(3^4.3=3^5\)

22 tháng 8 2020

\(3^4.3\)

học tốt

16 tháng 12 2019

Ta có: \(A=2+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=2^{101}-2\)

Hay \(A=2^{101}-2\)

Vậy \(A=2^{101}-2\)

_Học tốt_

16 tháng 12 2019

bạn trả lời quá chậm