Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=1+2+22+23+24+…+2200
=>2A=2+22+23+24+25+…+2201
=>2A-A=2+22+23+24+25+…+2201-1-2-22-23-24-…-2200
=>A=2201-1
=>A+1=2201
1) A = 1+2+2\(^2\) + ... + \(2^{200}\)
2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)
2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)
A = 2\(^{201}\) - 1
A+1 = 2\(^{201}\)
Vậy a + 1 = 2\(^{201}\)
2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)
3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)
3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)
2C = 3\(^{2006}\) - 3
2C+3 = 3\(^{2006}\)
Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )
2A = 2 + 22 + 23 + ... + 2201
A = 2A - A = 2 + 22 + 23 + ... + 2201 - ( 1 + 2 + 22 + 23 + ... + 2200 )
= 2 + 22 + 23 + ... + 2201 - 1 - 2 - 22 - 23 - ... - 2200 = 2201 - 1
=> A + 1 = 2201 - 1 + 1 = 2201
1.
A = 1 + 2 + 22 + 23 + ... + 2200
2A = 2 + 22 + 23 + 24 + ... + 2201
2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)
A = 2201 - 1
=> A + 1 = 2201 - 1 + 1
=> A + 1 = 2201
2.
B = 3 + 32 + 33 + ... + 32005
3B = 32 + 33 + 34 + ... + 32006
3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)
2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3
=> 2B + 3 = 32006
Ta có: A=1+2+22+23+24+…+2200
=>2A=2+22+23+24+25+…+2201
=>2A-A=2+22+23+24+25+…+2201-1-2-22-23-24-…-2200
=>A=2201-1
=>A+1=2201
2A = 2 + 2^2+ 2^3+...+2^101
2A-A = 2^101- 1
=> A = 2^101- 1
=> A + 1 = 2^101
2A=2+2^2+....+2^201
A = 2^201-1( lấy 2A trừ A)
=> A+1 là lũy thừa của 2
2A = 2+2^2 + 2^3 + ...+2^200 + 2^201
2A - A =( 2+2^2 + 2^3 + ...+2^200 + 2^201)-(1+2+2^2 + 2^3 + ...+2^200 )
=> A = 2^201 - 1
=> A+1 = 2^201
A = 1+2=22+...+2200
2A=2+22+23+...+2201
2A-A=(2+22+23+...+2201)-(1+2=22+...+2200)
A=2201-1
=>A+1=2201-1+1=2201
Vậy A =2201
\(2A=2+2^2+2^3+...+2^{201}\)
\(2A-A=\left(2+2^2+...+2^{201}\right)-\left(1+2+...+2^{200}\right)\)
\(A=2^{201}-1\)
\(A+1=2^{201}-1+1\)
\(A+1=2^{201}\)