K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có : 
K1 = 2^(a1).3^(b1) 
K2 = 2^(a2).3^(b2) 
K3 = 2^(a3).3^(b3) 
K4 = 2^(a4).3^(b4) 
K5 = 2^(a5).3^(b5) 
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên) 
Xét 4 tập hợp sau : 
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ) 
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn) 
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ) 
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn) 
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj 
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) 
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương. 

30 tháng 1 2019

\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)

\(\text{TH1 : z = 0}\)

\(\Rightarrow2016^0+2017^y=2018^x\)

\(\Rightarrow1+2017^y=2018^x\)

\(\Rightarrow y=1;x=1\)

\(\text{TH2 : y = 0 }\)

\(\Rightarrow2016^z+2017^0=2018^x\)

\(\Rightarrow2016^z+1=2018^x\)

\(\text{Vế trái là số lẻ khi x }\ge1\)

\(\text{Vế phải là số chẵn khi x }\ge1\)

\(\Rightarrow\text{TH2 bị loại}\)

\(\text{TH3 : }x,y,z\ne0\)

\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)

\(\Rightarrow2018^x\text{ là số chẵn}\)

\(\Rightarrow\text{TH3 bị loại}\)

\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)

30 tháng 6 2015

b) số nguyên tố chỉ có 2 ước là 1 và chính nó:

nếu tổng các ước là 1 => 1 + số đó = 18 => số đó = 18 - 1 = 17 là số nguyên tố (nhận)

Nếu tổng các ước là 19 => 1 + số đó = 19 => số đó = 19 - 1 = 18 không là số nguyên tố => không tồn tại

3 tháng 11 2021

A.5

 

12 tháng 9 2015

3. => 1 trong 2 số phải là 1(tích của 2 số tự nhiên khác 1 là hợp số)

=> số thứ 2 là 2

29 tháng 2 2016

3 số ngto đó là 2;5;7

19 tháng 3 2022

qua 8 năm rồi thì vẫn chưa ai giúp anh này....