Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là toàn vecto???
a/ \(=\left(\overrightarrow{EA}+\overrightarrow{AB}\right)+\left(\overrightarrow{BC}+\overrightarrow{CD}\right)=\overrightarrow{EB}+\overrightarrow{BD}=\overrightarrow{ED}\)
b/ \(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CD}+\left(\overrightarrow{DF}+\overrightarrow{FE}\right)\)
\(=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DE}=\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{AE}\)
Bài giải
\(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{CB}+\overrightarrow{ED}\)
\(\leftrightarrow\text{ }\overrightarrow{AB}-\overrightarrow{CB}+\overrightarrow{CD}-\overrightarrow{ED}+\overrightarrow{EA}=0\)
\(\leftrightarrow\text{ }\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{DE}+\overrightarrow{EA}=0\)
\(\leftrightarrow\text{ }\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=0\)
\(\leftrightarrow\text{ }\overrightarrow{AE}+\overrightarrow{EA}=0\) ( luôn đúng )
\(\Rightarrow\text{ ĐPCM}\)
a.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
VT:\(\overrightarrow{AB}+\overrightarrow{CD}\)
=\(\overrightarrow{AC}+\overrightarrow{CB}+\overrightarrow{CA}+\overrightarrow{AD}\)
=\(\overrightarrow{AB}+\overrightarrow{CB}=0\left(đpcm\right)\)
b.\(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{ED}+\overrightarrow{CB}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}+\overrightarrow{DE}+\overrightarrow{BC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(LĐ\right)\)