K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

Theo đề ta có : \(b=\frac{a+c}{2}\)  

=> a+c=2b (1)

 Do \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)

             = \(\frac{1}{2}\div\left(\frac{d}{bd}+\frac{b}{bd}\right)=\frac{1}{2}.\frac{b+d}{2bd}\)

                => \(\frac{1}{c}=\frac{b+d}{2bd}\)

               => 2bd= (b+d).c = bc+dc (2)

   Từ (1) và (2) 

 => 2bd = (a+c).d= ad+cd=bc+cd

                           => ad=bc

 Mà ad=bc (=) \(\frac{a}{b}=\frac{c}{d}\)

     => a;b;c;d lập thành 1 tỉ lệ thức

10 tháng 10 2016

 \(\frac{1}{2}.\left(\frac{d}{bd}+\frac{b}{bd}\right)\) chứ không phải chia nha bạn , mình viết lộn

27 tháng 10 2016

Ta có:

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{b+d}{2bd}\)

\(\Rightarrow2bd=c\left(b+d\right)\left(2\right)\)

Do b là TBC của a và c nên \(b=\frac{a+c}{2}\)

Thay vào (1) ta có: \(2.\frac{a+c}{2}.d=c.\left(\frac{a+c}{2}+d\right)\)

=> (a + c).d = \(\frac{c.\left(a+c+2d\right)}{2}\)

=> (a + c).2d = c.(a + c + 2d)

=> 2ad + 2cd = ac + c2 + 2cd

=> 2ad = ac + c2 = c.(a + c) = c.2b

=> ad = bc

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

26 tháng 9 2015

+) b là trung bình cộng của a và c => a + c  = 2b

+) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{2}{d}\right)\) => \(\frac{1}{c}=\frac{d+2b}{2bd}\) => 2bd = c(d + 2b) . Thay 2b = a + c ta có: 

(a + c)d = c.(d + a + c) => ad + cd = cd + ac + c2 => ad = ac + c=> ad = c.(a + c) => ad = cb => \(\frac{a}{b}=\frac{c}{d}\) (điều phải chứng minh)

26 tháng 9 2015

Bạn xem tại đây