Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔHDB=ΔHEC
b: Ta có: ΔHDB=ΔHEC
nên BD=EC
Ta có: AD+DB=AB
AE+EC=AC
mà BD=CE
và AB=AC
nên AD=AE
1) đường thẳng xy là đường trung trực của đoạn thẳng AB nếu
a) xy vuông góc AB
b) xy vuông góc với AB hoặc tại A hoặc tại B
c) xy đy qua trung điểm của AB
d) xy vuông góc với AB và đi qua trung điểm của AB
1) đường thẳng xy là đường trung trực của đoạn thẳng AB nếu
a) xy vuông góc AB
b) xy vuông góc với AB hoặc tại A hoặc tại B
c) xy đy qua trung điểm của AB
d) xy vuông góc với AB và đy qua trung điểm của AB
1)
a) Ta có: góc BAD+góc CAE+góc BAC=180 độ
Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)
Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)
Từ (1) và (2) => góc BAD= góc ACE
Xét tam giác ABD và tam giác ACE có:
góc ADB=góc AED=90 độ
AB=AC ( vì tam giác ABC vuông cân tại A)
góc BAD=góc ACE (cmt)
=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)
b) Theo câu a) Tam giác ABD=tam giác ACE
=> DA=EC và BD=AE
Mà DE=DA+AE nên DE=EC+BD