K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

PT \(\Leftrightarrow 3x^2+2x(2y-1)+(4y^2+6y+2021-T)=0\)

Coi đây là PT bậc 2 ẩn $x$.

Vì dấu "=" tồn tại nên PT trên luôn có nghiệm

\(\Rightarrow \Delta'=(2y-1)^2-3(4y^2+6y+2021-T)\geq 0\)

\(\Leftrightarrow -8y^2-22y-6062+3T\geq 0\)

\(\Leftrightarrow 3T\geq 8y^2+22y+6062\)

Mà: \(8y^2+22y+6062=8(y+\frac{11}{8})^2+\frac{48375}{8}\geq \frac{48375}{8}\)

\(\Rightarrow T\geq \frac{48375}{8}:3=\frac{16125}{8}\) (đây chính là GTNN của T)

\(\Leftrightarrow \)

27 tháng 11 2019

Ta có:

\(3x^2-6x+4y^2-4xy+4y+3=0\)

\(\Leftrightarrow x^2-4xy+4y^2-2x+4y+1+2x^2-4x+2=0\)

\(\Leftrightarrow\left(x-2y\right)^2-2\left(x-2y\right)+1+2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x-2y-1\right)^2+2\left(x-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y-1=0\\x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

Vậy ...

9 tháng 1 2021

\(A=x-2y+3z\left(x,y,z>0\right)\)

\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)

(1) <=> \(5x+5y=10\) <=> x+ y = 2

=> y = 2-x

Từ (1) => \(2x+4\left(2-x\right)+3z=8\) 

=> -2x +3z =0

=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A

=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)

Vậy Amin = -4.

 

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

9 tháng 12 2015

toan violympic lop 9 la GTNN

\(B=\sqrt{x^2-6x+2y^2+4y+20}+\sqrt{x^2+2x+5}\)

\(=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2+9}+\sqrt{\left(x+1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)

tick nha

9 tháng 12 2015

\(B=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2+3^2}+\sqrt{\left(x+2\right)^2+2^2}\ge\sqrt{\left(3-x+x+2\right)^2+\left(3+2\right)^2}=5\sqrt{2}\)

Bmin = \(5\sqrt{2}\) khi x=0 ; y =-1

B min nhé