K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

18 tháng 12 2020

Có: \(3x-4y=0 \Leftrightarrow y=\dfrac{3x}{4}\)

Thay vào biểu thức A được: 

\(A=x^2+\Bigg(\dfrac{3x}{4}\Bigg)^2 \)

Vì \(x^2 ≥0 ; \Bigg(\dfrac{3x}{4}\Bigg)^2 ≥0\)

\(\Rightarrow A_{min} \Leftrightarrow x=0 \Rightarrow y=0\)

Vậy \(\Rightarrow A_{min} \Leftrightarrow x=y=0\).

21 tháng 12 2020

cam on nha banvui

31 tháng 10 2017

Bạn chịu khó vào link này nhé : https://h.vn/hoi-dap/question/49863.html

Bài 1: 

a: \(x^2+5x=x\left(x+5\right)\)

Để biểu thức này âm thì \(x\left(x+5\right)< 0\)

hay -5<x<0

b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)

\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)

3 tháng 10 2021

còn bài 2 nữa ạ.

6 tháng 2 2022

+) \(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\)≥0 ∀x

\(A\)≥2 ∀x

Min A=2⇔\(x=3\)

+) \(B=11-x^2\)

Câu này chỉ tìm được max thôi nha

6 tháng 2 2022

\(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\)

Vậy GTNN của A là 2 khi x = 3

 

13 tháng 11 2019

a

\(\left|3x-6\right|\ge0\Rightarrow2\left|3x-6\right|\ge0\Rightarrow2\left|3x-6\right|-4\ge-4\)

Dấu "=" xảy ra tại x=1/2

b

\(\left|4y-5\right|\ge0\Rightarrow3\left|4y-5\right|\ge0\Rightarrow3\left|4y-5\right|+7\ge7\)

Dấu "=" xảy ra tại y=5/4