K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

Ta có: 3a+2b chia hết cho 17

=>9(3a+2b) chia hết cho 17

=>27a+18b chia hết cho 17

=>(27a-17a)+(18b-17b) chia hết cho 17         (do 17a,17b chia hết cho 17)

=>10a+b chia hết cho 17 (đpcm)

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

18 tháng 12 2015

Ta có: 17a chia hết cho 17

suy ra :17a+3a+b chia hết cho 17

suy ra :20a+2b chia hết cho 17

rút gọn cho 2

suy ra :10a+b a hết cho 17

do 3a+2b⋮⋮17

\Rightarrow⇒8(3a+2b)⋮⋮17

     Ta có 8(3a+2b)+10a+b

=24a+16b+10a+b

=34a+17b

17(2a+b)⋮⋮17

vậy 8(3a+2b)+10a+b  ⋮⋮17

             mà 8(3a+2b)⋮⋮17               (\forall∀a,b\in∈N)

      nên 10a+b⋮⋮17

16 tháng 6 2019

\(2\left(10a+b\right)-\left(3a+2b\right)\)

\(=20a+2b-3a-2b\)

\(=17a\)\(⋮\)\(17\)với \(\forall a\in N\)

Vì \(3a+2b\)\(⋮\)\(17\)với \(\forall a\in N\)

\(\Rightarrow2\left(10a+b\right)\)\(⋮\)\(17\)

\(\Leftrightarrow10a+b\)\(⋮\)\(17\)với \(\forall x\in N\)

29 tháng 1 2017

a, Giả sử 10a + b \(⋮\) 17         (1)

Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17

=> 24a + 16b \(⋮\) 17                             (2)

Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17

=> 10a + b + 24a + 16b \(⋮\) 17

=> (10a + 24a) + (16b + b) \(⋮\) 17

=> 34a + 17b \(⋮\) 17

=> 17(2a + b) \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\)17 (đpcm)

b, Giả sử 10a + b \(⋮\) 17        (1)

Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17

=> 7a - 35b \(⋮\) 17                  (2)

Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17

=> 10a + b + 7a - 35b \(⋮\) 17

=> (10a + 7a) + (b - 35b) \(⋮\) 17

=> 17a + (-34b) \(⋮\) 17

=> 17.[a + (-2)b] \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\) 17 (đpcm)

22 tháng 11 2021
23456789:123
26 tháng 12 2017

ta có 17 chia hết cho 17 
suy ra 17a + 3a + b chia hết cho 17 
suy ra 20a + 2b chia hết cho 17 
rút gọn cho 2 

suy ra 10a + b chia hết cho 17

26 tháng 12 2017

Giả sử 10a + b chia hết cho 17

=> ( 10a + b ) - ( 3a + 2b ) chia hết cho 17

=> 3( 10a + b ) - 10( 3a + 2b ) chia hết cho 17

=> ( 30a + 3b ) - ( 30a + 20b ) chia hết cho 17

=> 30a + 3b - 30a - 20b chia hết cho 17

=> -17b chia hết cho 17

Biểu thức trên đúng vì -17b = -1 . 17 . b => chia hết cho 17

Với giả thiết ban đầu là 10a + b chia hết cho 17 ta mới có ( 10a + b ) - ( 3a + 2b ) chia hết cho 17

Mà 3a + 2b chia hết cho 17 => 10a + b phải chia hết cho 17

22 tháng 11 2015

3a + 2b chia hết cho 17

17a + 3a + 2b chia hết cho 17

Mà 17a chia hết cho 17

20a + 2b chia hết cho 17

=> (20a + 2b):2 chia hết cho 17

10a + b chia hết cho 17

Vậy 10a + b chia hết cho 17 (đpcm) 

28 tháng 11 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

14 tháng 8 2016

Xét hiệu : 10 x (3a + 2b) - 3 x (10a + b) = 30a +20b - 30a - 3b = 17b chia hết cho 17

Mà 3a + 2b chia hết cho 17 => 10 x (3a + 2b) chia hết cho 17  => 3 x (10a + b) cũng chia hết cho 17 

Mặt khác: 3 không chia hết cho 17 => 10a + b chia hết cho 17

Vậy khi 3a + 2b chia hết cho 17 (a , b thuộc N) thì 10a + b chia hết cho 17.

(Bạn cũng có thể xét hiệu 3a + 2b - 2(10a + b) = -17a cũng chia hết cho 17 rồi lập luận tương tự như cách mình trình bày ở trên)

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60