K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

Đặt \(\dfrac{x}{2019}=\dfrac{y}{2020}=\dfrac{z}{2021}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2019k\\y=2020k\\z=2021k\end{matrix}\right.\)

Ta có : \(4.\left(x-y\right).\left(y-z\right)=4.\left(2019k-2020k\right).\left(2020k-2021k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)

Lại có : \(\left(z-x\right)^2=\left(2021k-2019k\right)^2=4k^2\)

Do đó : \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)

4 tháng 1 2018

Đặt x/2017=y/2018=z/2019=k => x=2017k,y=2018k,z=2019k

Ta có: 4(x-y)(y-z)=4(2017k-2018k)(2018k-2019k)=4(-k)(-k)=4k(1)

(z-x)2 = (2019k-2017k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) => đpcm

NV
20 tháng 3 2023

Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)

\(\Rightarrow x^5< x^2\)

Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\)\(z< 1\Rightarrow z^7< z^2\)

\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)

\(\Rightarrow x^5+y^6+z^7< 1\)