Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)
bài 1
ÁP dụng AM-GM ta có:
\(\frac{a^3}{b\left(2c+a\right)}+\frac{2c+a}{9}+\frac{b}{3}\ge3\sqrt[3]{\frac{a^3.\left(2c+a\right).b}{b\left(2c+a\right).27}}=a.\)
tương tự ta có:\(\frac{b^3}{c\left(2a+b\right)}+\frac{2a+b}{9}+\frac{c}{3}\ge b,\frac{c^3}{a\left(2b+c\right)}+\frac{2b+c}{9}+\frac{a}{3}\ge c\)
công tất cả lại ta có:
\(P+\frac{2a+b}{9}+\frac{2b+c}{9}+\frac{2c+a}{9}+\frac{a+b+c}{3}\ge a+b+c\)
\(P+\frac{2\left(a+b+c\right)}{3}\ge a+b+c\)
Thay \(a+b+c=3\)vào ta được":
\(P+2\ge3\Leftrightarrow P\ge1\)
Vậy Min là \(1\)
dấu \(=\)xảy ra khi \(a=b=c=1\)
Kurosaki Akatsu giải thế thì đề bài cho \(b^2+c^2\le a^2\) để làm gì?
Áp dụng bất đẳng thức AM-GM ta có :
\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(P=\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge4.\sqrt[4]{\frac{b^2}{a^2}.\frac{c^2}{a^2}.\frac{a^2}{b^2}.\frac{a^2}{c^2}}=4.1=4\)
=> \(Min_P=4\)
Ta co:
\(P\ge21\left(a^2+b^2+c^2\right)+12\left(a+b+c\right)^2+\frac{2017.9}{2}\)
\(=21\left(a^2+b^2+c^2\right)+12\left(a+b+c\right)^2+\frac{18153}{2}\)
\(\Leftrightarrow\frac{P}{\left(a+b+c\right)^2}\ge21\left[\left(\frac{a}{a+b+c}\right)^2+\left(\frac{b}{a+b+c}\right)^2+\left(\frac{c}{a+b+c}\right)^2\right]+12+\frac{\frac{18153}{2}}{\left(a+b+c\right)^2}\)
Dat \(\left(\frac{a}{a+b+c};\frac{b}{a+b+c};\frac{c}{a+b+c}\right)\rightarrow\left(x;y;z\right)\)
\(\Rightarrow x+y+z=1\)
\(\Rightarrow\left(a+b+c\right)^2=\frac{a^2}{x^2}\)
BDT tro thanh:
\(\frac{P}{\left(a+b+c\right)^2}\ge21\left(x^2+y^2+z^2\right)+12+\frac{18153}{2\left(a+b+c\right)^2}\)
\(\Leftrightarrow\frac{P}{\frac{a^2}{x^2}}\ge21\left(x^2+y^2+z^2\right)+12+\frac{18153}{2\left(a+b+c\right)^2}\ge21.\frac{\left(x+y+z\right)^2}{3}+12+\frac{18153}{8}\)
\(\Leftrightarrow\frac{x^2P}{a^2}\ge7+12+\frac{18153}{8}\)
Ta lai co:\(x=\frac{a}{a+b+c}\ge\frac{a}{2}\Rightarrow a^2\le4x^2\)
Suy ra:\(\frac{x^2P}{a^2}\ge\frac{x^2P}{4x^2}=\frac{P}{4}\)
\(\Rightarrow\frac{P}{4}\ge\frac{18503}{8}\)
\(\Leftrightarrow P\ge\frac{18503}{2}\)
Dau '=' xay ra khi \(a=b=c=\frac{2}{3}\)
Vay \(P_{min}=\frac{18503}{2}\)khi \(a=b=c=\frac{2}{3}\)