Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=2x+y+z;b=2y+z+x;c=2z+x+y\)
\( \implies\) \(a+b+c=\left(2x+y+z\right)+\left(2y+z+x\right)+\left(2z+x+y\right)\)
\( \implies\) \(a+b+c=4x+4y+4z\)
\( \implies\) \(x+y+z=\frac{a+b+c}{4}\)
+)Ta có : \(a=2x+y+z\)
\(\iff\) \(a=x+\left(x+y+z\right)\)
\(\iff\) \(a-\left(x+y+z\right)=x\)
\(\iff\) \(a-\frac{a+b+c}{4}=x\)
\(\iff\) \(x=\frac{3a-b-c}{4}\)
+)Ta có :\(b=2y+z+x\)
\(\iff\) \(b=y+\left(y+z+x\right)\)
\(\iff\)\(b-\left(y+z+x\right)=y\)
\(\iff\) \(b-\frac{a+b+c}{4}=y\)
\(\iff\)\(y=\frac{3b-c-a}{4}\)
+)Ta có :\(c=2z+x+y\)
\(\iff\) \(c=z+\left(z+x+y\right)\)
\(\iff\) \(c-\left(z+x+y\right)=z\)
\(\iff\) \(c-\frac{a+b+c}{4}=z\)
\(\iff\)\(z=\frac{3c-a-b}{4}\)
\( \implies\) \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\)
\(=\frac{3a-b-c}{4a}+\frac{3b-c-a}{4b}+\frac{3c-a-b}{4c}\)
\(=\frac{9}{4}-\left(\frac{b}{4a}+\frac{c}{4a}+\frac{c}{4b}+\frac{a}{4b}+\frac{a}{4c}+\frac{b}{4c}\right)\)
\(=\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\)
\(=\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\)
Áp dụng bất đẳng thức ( BĐT Cosi ) : \(m+n\)\( \geq\)\(2\sqrt{mn}\) \(\left(m;n>0\right)\)ta được :
\(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{a}.\frac{a}{b}}\) = 2 \( \implies\) \(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2
\(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2 \(\sqrt{\frac{c}{a}.\frac{a}{c}}\) = 2 \( \implies\) \(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2
\(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{c}.\frac{c}{b}}\) = 2 \( \implies\) \(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2
\( \implies\) \(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\) \( \geq\) 2 + 2 + 2
\( \implies\) \(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\) \( \geq\) 6
\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{6}{4}\)
\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{3}{2}\)
\( \implies\) \(-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(-\frac{3}{2}\)
\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{9}{4}-\frac{3}{2}\)
\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{3}{4}\)
a,
\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)
d,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)
Có : x/x+y ; y/y+z ; z/z+x đều > 0
=> x/x+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1
Lại có : x/x+y ; y/y+z ; z/z+x đều < 1
=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = 2x+2y+2z/x+y+z = 2
=> ĐPCM
Tk mk nha