Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi VT=\(3\left(ab+bc+ca\right)-abc\left(a+b+c\right)=3\left(ab+bc+ca\right)-\frac{\left(ab+bc+ca\right)^2-a^2b^2-b^2c^2-c^2a^2}{2}\)
\(\le3t-\frac{t^2}{2}+\frac{3}{2}=\frac{12-\left(t-3\right)^2}{2}\le6\)(t=ab+bc+ca)
(a^2b^2+b^2c^2+c^2a^2 nhỏ hơn hoặc bằng 3)
\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)
Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)
Nhân theo vế ta đc :
\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng bđt Cauchy :
\(VT\ge\frac{8abc}{abc}=8\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Bài 1:
a: \(-\sqrt{\left(-3\right)^2}=-\left|-3\right|=-3\)
b: \(-\sqrt{\left(-2\right)^4}=-\left|\left(-2\right)^2\right|=-4\)
c: \(=-\sqrt{5^2}=-\left|5\right|=-5\)
d: \(=\sqrt{\left(-3\right)^6}=\sqrt{3^6}=\left|3^3\right|=27\)
e: \(-\sqrt{\left(-1\right)^8}=-\left|\left(-1\right)^4\right|=-1\)
Em nghĩ đề phải là \(\sqrt{c\left(a-c\right)}-\sqrt{c\left(b-c\right)}-\sqrt{ab}< 0\) chứ? Và em cũng không chắc đâu. Em mới biết sơ sơ về BĐT thôi. Nên nếu sai thì thông cảm cho em ạ
Từ đề bài suy ra \(\left(a-c\right)\left(b-c\right)>0\Leftrightarrow ab>ac+bc-c^2\)
Lại có \(ab>c\left(a-c\right)+bc>c\left(a-c\right)\) (do b và c không âm)
Suy ra \(\sqrt{c\left(a-c\right)}< \sqrt{ab}\)(1). Lại có: \(ab>ac+\left(bc-c^2\right)\)
\(=ac+c\left(b-c\right)>c\left(b-c\right)\Rightarrow\sqrt{c\left(b-c\right)}< \sqrt{ab}\) (2)
Từ (1) và (2) suy ra \(VT< \sqrt{ab}-\sqrt{ab}-\sqrt{ab}=-\sqrt{ab}\le0\)
Do vậy VT < 0 ta có đpcm.
Dễ thấy \(\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)^2=2-2\sqrt{1-a^4}\) nên đặt \(\sqrt{1+a^2}-\sqrt{1-a^2}=t\) thì
\(GT\Leftrightarrow\frac{2-t^2}{2}+\left(b-1\right)t+b-4\le0\)\(\Leftrightarrow t^2-2\left(b-1\right)t-2b+6\ge0\)
Coi đây là Pt ẩn t , dễ thấy hệ số của \(t^2\)và tam thức bậc 2 ẩn t cùng dấu . Do đó \(\Delta'\le0\)
---> tự giải
cho x,y,z>0 chứng minh rằng
\(\frac{xy}{x^2+yz+zx}+\frac{yz}{y^2+zx+xy}+\frac{zx}{z^2+xy+yz}\le\frac{x^2+y^2+z^2}{xy+xz+zx}\)
a) \(BĐT\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\sqrt{\frac{c\left(a-c\right)}{ab}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)
\(\Leftrightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le1\)
Áp dụng AM-GM:\(VT\le\frac{1}{2}\left(\frac{c}{b}+1-\frac{c}{a}+\frac{c}{a}+1-\frac{c}{b}\right)=1\left(đpcm\right)\)
Dấu = xảy ra khi (a+b).c=ab
b) \(2+b+c+2+b+c\ge2\sqrt{\left(b+1\right)\left(c+1\right)}+2+b+c=\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge4\left(1+a\right)\)
\(\Leftrightarrow b+c\ge2a\)
cau a) dung cosi
\(\sqrt{c\left(a-c\right)}\le\frac{a-c+c}{2}\) ap dung cosi cho hai so c va a-c
tuong tu voi cac so khac
\(BT\le\frac{a-c+c}{2}+\frac{b-c+c}{2}-\frac{a+b}{2}\)(bt la VT cua de)
=> DPCM
b)
dung cosi nhu cau a
lam nhanh luon
\(\sqrt{1+b}\ge\frac{b+1+1}{2}\)
tuong tu
\(BT\ge\frac{b+2}{2}+\frac{c+2}{2}\ge a+2\)
<=> b+c>=2a
Stronger bạn xem lại đề nhé
\(\left|a\right|\ge0\forall x\)mà theo giả thiết \(\left|a\right|\le0\)
\(\Rightarrow a=0\)
Chứng minh tương tự có \(b=0;c=0\)
Khi đó thỏa mãn giả thiết \(a+b+c=0\)
Thay vào đpcm : \(a^4+b^6+c^8=0\le2\)( ? )
Có : | a | \(\le0\) ; | b | \(\le0\) ; | c | \(\le0\) ;
ta có : \(a^4\le a^2;b^6\le b^2;c^8\le c^2\)
Từ đó suy ra \(a^4+b^6+c^8\le a^2+b^2+c^2\)
Lại có : \(a-1\le0;b-1\le0;c-1\le0\)
và \(a+1\ge0;b+1\ge0;c+1\ge0\) nên
\(a+1\ge0;b+1\ge0;c+1\ge0;a-1\ge0;b-1\ge0;c-1\ge0\)
=> 2ab + 2 bc + 2ca + 2 \(\ge0\)
<=> - 2 (ab + bc + ca ) \(\le2\)
Hơn nữa a+ b +c = 0 <=> \(a^2+b^2+c^2=-ab-bc-ca\le2\)
Vậy \(a^4+b^6+c^8\le2\)
Mình ko biết đúng không nữa vì mới được học nên ko chắc