Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge\frac{3}{4}a\)\(\Leftrightarrow\)\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}a-\frac{1}{8}b-\frac{1}{8}-\frac{1}{4}\)
\(\Sigma\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) :)
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
Ta có \(x^3+y^3\ge\frac{1}{4}\left(x+y\right)^3;xy\le\left(\frac{x+y}{2}\right)^2\) với mọi \(x,y>0\)
Kết hợp với giả thiết suy ra :
\(\frac{1}{4}\left(a+b+c\right)^3\le\left(a+b\right)^3+c^3\le4\left(a^3+b^3\right)+c^3\le2\left(a+b+c\right)\left(\frac{\left(a+b+c\right)^2}{4}-2\right)\)
\(\Rightarrow a+b+c\ge4\)
Khi đó sử dựng bất đẳng thức AM-GM ta có :
\(\frac{2a^2}{3a^2+b^2+2a\left(c+2\right)}=\frac{a}{a+c+2+\left(\frac{b^2}{2a}+\frac{a}{2}\right)}\le\frac{a}{a+c+2+2\sqrt{\frac{b^2}{2a}.\frac{a}{2}}}=\frac{a}{a+b+c+2}\)
Và \(\left(a+b\right)^2+c^2\ge\frac{1}{2}\left(a+b+c\right)^2\)
Suy ra \(P\le\frac{a+b+c}{a+b+c+2}-\frac{\left(a+b+c\right)^2}{32}\)
Đặt \(t=a+b+c\ge4,P\le f\left(t\right)=\frac{t}{t+2}-\frac{t^2}{32}\)
Ta có : \(f'\left(t\right)=\frac{2}{\left(t+2\right)^2}-\frac{t}{16}=\frac{32-t\left(t+2\right)^2}{16\left(t+2\right)^2}<0\) với mọi \(t\ge4\)
Suy ra hàm số \(f'\left(t\right)\) nghịch biến trên \(\left(4;+\infty\right)\). Do đó \(P\le f\left(t\right)\le f\left(4\right)=\frac{1}{6}\)
Dấu = xảy ra khi và chỉ khi \(\begin{cases}a=b;a+b=c\\a+b+c=4\end{cases}\) \(\Leftrightarrow a=b=1,c=2\)
Vậy giá trị lớn nhất của P bằng \(\frac{1}{6}\)
Lời giải:
Ta có:
$a^2+b^2+c^2+ab+bc+ac=\frac{6(a^2+b^2+c^2+ab+bc+ac)}{6}=\frac{4(a+b+c)^2+(a-b)^2+(b-c)^2+(c-a)^2}{6}$
$\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}$
$\Rightarrow P\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}.\left[\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\right]$
Đặt $a-b=m, b-c=n$ thì $a-c=m+n$
Khi đó:
$6P\geq [m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$
Áp dụng BĐT AM-GM và Cauchy-Schwarz:
$[m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$
$\geq [\frac{(m+n)^2}{2}+(m+n)^2]\left[\frac{1}{2}(\frac{1}{m}+\frac{1}{n})^2+\frac{1}{(m+n)^2}\right]$
$\geq \frac{3}{2}.(m+n)^2\left[\frac{8}{(m+n)^2}+\frac{1}{(m+n)^2}\right]$
$=\frac{3}{2}(m+n)^2.\frac{9}{(m+n)^2}=\frac{27}{2}$
$\Rightarrow 6P\geq \frac{27}{2}$
$\Rightarrow P\geq \frac{9}{4}$
Vậy GTNN của $P$ là $\frac{9}{4}$.
Ta có:
\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)
Hoàn toàn tương tự ta có:
\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);
\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo bất đẳng thức trên ta được:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Do đó:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{1}{6\left(ab+bc+ca\right)}\)
Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)
đặt \(a=\frac{yz}{x^2};b=\frac{zx}{y^2};c=\frac{xy}{z^2}\left(x;y;z>0\right)\)khi đó bđt cần chứng minh trở thành
\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+xz\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)
áp dụng bđt Bunhiacopxki dạng phân thức ta được
\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+zx\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\)
phép chứng minh sẽ hoàn tất nếu ta chứng minh được
\(\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)
hay ta cần chứng minh
\(2\left(x^2+y^2+z^2\right)^2\ge\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+xz\right)\left(2y^2+xz\right)+\left(z^2+xy\right)\left(2z^2+xy\right)\)
khai triển và thu gọn ta được \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
đánh giá cuối cùng là một đánh giá đúng. Bất đẳng thức được chứng minh
\(\frac{a^3}{\left(1-a\right)^2}+\frac{1-a}{8}+\frac{1-a}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1-a\right)^2}.\frac{\left(1-a\right)}{8}.\frac{1-a}{8}}=\frac{3a}{4}\)
Suy ra \(\frac{a^3}{1-a^2}\ge\frac{3a}{4}-\frac{\left(1-a\right)}{4}=\frac{4a-1}{4}\)
Tương tự hai BĐT còn lại rồi cộng theo vế:
\(A\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng bđt AM-GM:
\(\frac{1}{a^3\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge2\sqrt{\frac{a\left(b+c\right)}{4a^3\left(b+c\right)}}=\frac{1}{a}\)
\(\frac{1}{b^3\left(c+a\right)}+\frac{b\left(c+a\right)}{4}\ge2\sqrt{\frac{b\left(c+a\right)}{4b^3\left(c+a\right)}}=\frac{1}{b}\)
\(\frac{1}{c^3\left(a+b\right)}+\frac{c\left(a+b\right)}{4}\ge2\sqrt{\frac{c\left(a+b\right)}{4c^3\left(a+b\right)}}=\frac{1}{c}\)
Cộng theo vế:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}+\frac{ab+bc+ac}{2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{ab+bc+ac}{2}\)
\(\Leftrightarrow\frac{2}{a^3\left(b+c\right)}+\frac{2}{b^3\left(c+a\right)}+\frac{2}{c^3\left(a+b\right)}\ge ab+bc+ac\) (đpcm)
\("="\Leftrightarrow a=b=c=1\)
Ta chứng minh \(\frac{a^3}{\left(1-a\right)^2}\ge\frac{4a-1}{4}\) với mọi a thỏa mãn \(0< a< 1\)
\(\Leftrightarrow4a^3-\left(4a-1\right)\left(1-a\right)^2\ge0\)
\(\Leftrightarrow9a^2-6a+1\ge0\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
Tương tự ta có: \(\frac{b^3}{\left(1-b\right)^2}\ge\frac{4b-1}{4}\); \(\frac{c^3}{\left(1-c\right)^2}\ge\frac{4c-1}{4}\)
Cộng vế với vế:
\(\Rightarrow P\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)
\(\Rightarrow P_{min}=\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)
thanks bn