Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=2008;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2008\)
\(\Rightarrow a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a\left(ab+ac\right)+abc-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a^2\left(b+c\right)=0\)
\(\Leftrightarrow\left(ab+bc+ac+a^2\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left[b\left(a+c\right)+a\left(a+c\right)\right]\left(b+c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\)Hoặc a + b = 0 hoặc b + c = 0 hoặc a + c = 0
Vậy 1 trong 3 số bằng 2008 (đpcm)
Em tham khảo cách làm tương tự như link bên dưới nhé!
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Ta có: \((a^{2007}+b^{2007})\left(a+b\right)-\left(a^{2006}+b^{2006}\right)ab\)
\(=\left(a^{2008}+a^{2007}b+ab^{2007}+b^{2008}\right)-\left(a^{2007}b+ab^{2007}\right)\)
\(=a^{2008}+b^{2008}\)
Mà: \(a^{2006}+b^{2006}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\) ( * )
\(\Rightarrow\left(a^{2008}+b^{2008}\right)\left(a+b\right)-\left(a^{2008}+b^{2008}\right)ab=a^{2008}+b^{2008}\)
\(\Leftrightarrow\left(a^{2008}+b^{2008}\right)\left(a+b-ab\right)=a^{2008}+b^{2008}\)
\(\Leftrightarrow a+b-ab=1\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)
thay vào (*) ta tính dc:
a=1 thì\(\orbr{\begin{cases}b=1\\b=0\end{cases}}\) b=1 thì \(\orbr{\begin{cases}a=1\\a=0\end{cases}}\)
mặt khác a, b dương => a=1, b=1
Khi đó: \(a^{2009}+b^{2009}=1+1=2\)
Ta có : \(a^{2006}+b^{2016}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)
\(\Leftrightarrow\orbr{\begin{cases}a^{2006}+b^{2006}-\left(a^{2007}+a^{2007}\right)=0\left(1\right)\\a^{2008}+b^{2008}-\left(a^{2007}+b^{2007}\right)=0\left(2\right)\end{cases}}\)
Cộng (1) với (2) => \(a^{2008}+b^{2008}-2\left(a^{2007}+b^{2007}\right)+a^{2006}+b^{2006}=0\)
\(\Leftrightarrow a^{2008}-2a^{2007}+a^{2006}+b^{2008}-2b^{2007}+b^{2006}\)
\(\Leftrightarrow a^{2006}\left(a^2-2a+1\right)+b^{2006}\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow a^{2006}\left(a-1\right)^2+b^{2006}\left(b-1\right)^2=0\) (*)
Vì a , b > 0 và : \(\left(a-1\right)^2\ge0\forall a\) ; \(\left(b-1\right)^2\ge0\forall b\)
Nên : phương trình (*) <=> \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}}\)
Vậy \(S=a^{2009}+b^{2009}=1+1=2\)
\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{b}{bc+b+2008}+\dfrac{c}{ca+c+1}=1\)
=>\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{ab}{abc+ab+a2008}+\dfrac{abc}{abca+abc+ab1}=1\)
=>\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{ab}{2008+ab+2008a}+\dfrac{2008}{2008a+2008+ab}=1\)(do abc=2008_
=>\(\dfrac{2008a+2008+ab}{2008a+2008+ab}=1\)
vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)
=>(a+b+c)(bc+ac+ab) - abc = 0
=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0
=> a2(b+c) + (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0
=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0
Nếu b+c = 0 => a = 2008
nếu a+ b = 0 => c = 2008
Nếu a+c = 0 => b = 2008
Vậy....
Trần Thị Loan : tại sao a+b+c = 2008 và 1/a+1/b+1/c = 1/2008 lại => 1/z+1/v+1/c = 1/(a+b+c) ????