K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

A B C D E F O

Hình mình vẽ hơi sai vì mình không đo

22 tháng 3 2016

a/Áp dụng định lí Pytago và tam giác ABC vuông tại A:

BC2=AB2+AC2

=>AC2=BC2-AB2=102-62=100-36=64

=> AC=\(\sqrt{64}=8cm\)

b/ Xét tam giác ABC và tam giác ADC có:

AC chung

góc BAC=DAC=90 độ

AD=AB(gt)

=> Tam giác ABC=tam giác ADC(c-g-c)

19 tháng 4 2017

a) Thấy 52=32+42 hay BC2=AB2+AC2

\(\Rightarrow\Delta ABC\) vuông tại A

b)Hình thì chắc bạn tự vẽ được nhaleuleuleuleuleuleu

Xét 2\(\Delta ABH\)\(\Delta DBH\) có:

AB=DB

\(\widehat{BAH}=\widehat{BDH}\)

BH chung

\(\Rightarrow\Delta ABH=\Delta DBH\left(ch-cgv\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)

\(\Rightarrow\)BH là tia phân giác \(\widehat{ABC}\)

c)tam giác ABC đã có các cạnh có độ dài khác nhau nên tam giác ABC ko cân được đâu chị

19 tháng 4 2017

a) Ta có :

-BC2=52=25(1)

-AB2+AC2=32+42=25(2)

-Từ (1)và(2)suy ra BC2=AB2+AC2

-do đó tam giác ABC vuông tại A(áp dụng định lý Py-ta-go đảo)

-vậy tam giác ABC là tam giác vuông .

b)Xét \(\Delta\) ABH(vuông tại A) và \(\Delta\) DBH(vuông tại D) có

-BH là cạnh huyền chung

-AB=BD(gt)

-Do đó:\(\Delta\) ABH=\(\Delta\) DBH(cạnh huyền-cạnh góc vuông)

\(\Rightarrow\)Góc ABH =Góc DBH(hai góc tương ứng)

Vậy BH là tia phân giác của góc ABC

6 tháng 2 2017

+ Xét tứ giác ABDC có:
MA=MD và MB=MC => tứ giác ABDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành)
Mà ta lại có ^BAC=90
=> Hình bình hành ABDC là hình chữ nhật
+ Kéo dài BA về phía A cắt EI tại F. Xét tứ giác ACIF có AF cuông góc với AC
CI vuông góc với AC (do ABDC là hình chữ nhật)
=> AF//CI. mà IF//AC => ACIF là hình bình hành (tứ giác có các cặp cạnh đối // từng đôi một)
Mà CI vuông góc AC => ACIF là hình chữ nhật
=> AF=CI mà CI=AC => AF=AC (1)
+ Xét tam giác vuông ABC ta có MA=MB=MC (trong tam giác vuông trung tuyến thuộc cạnh huyền thì bằng 1/2 cạnh huyền) => tam giác MAC cân tại M => ^ACB=^MAC
Mà ^ACB=^BAH (cùng phụ với ^ABC)
=>^MAC=BAH mà ^BAH=^EAF (đối đỉnh) => ^EAF=^MAC (2)
+ Xét hai tam giác vuông AEF và tam giác vuông ADC có
^AFE=^ACD=90 (3)
Từ (1) (2) và (3) => tam giác AEF=tam giác ADC (g.c.g)
=> AE=AD
Mà AD=BC (đường chéo của hình chữ nhật ABDC)
=> AE=BC (dpcm)

6 tháng 2 2017

mik cung đang mắc

22 tháng 2 2016

Dễ thôi mà, góc B và góc E cùng nhìn chung 1 cung là cung AD => góc B = góc E. Mà góc ABD = 90 độ => góc AED cũng = 90 độ

23 tháng 2 2016

mẹ mình cũng nới thế tiếc là mình mới lớp 7

23 tháng 2 2016

Vào online Math mà đăng

23 tháng 2 2016

cái này thì bn vào olm rồi đăng cũng được

a: Xét tứ giác ABEC có 

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABEC là hình chữ nhật

Suy ra: CD⊥AC

b: Xét ΔCAE có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

c: Ta có: ΔCAE cân tại C

nên CA=CE

mà CA=BD

nên BD=CE

d: Xét ΔMAE có 

MH là đường cao

MH là đường trung tuyến

Do đó: ΔMAE cân tại M

Xét ΔDEA có 

EM là đường trung tuyến

EM=DA/2

Do đó: ΔDEA vuông tại E

hay AE⊥ED

26 tháng 4 2016

Bài làm:

a) Xét tam giác ABH và tam giác ACH có:

Góc AHC = góc AHB = 90o

AB = AC

Vì AB = AC => tam giác ABC cân tại A => Góc B = góc C

Vậy tam giác ABH = tam giác ACH (c.huyền - góc nhọn)

=> HB = HC = 8 : 2 = 4 cm

Áp dụng định lí Py Ta go cho tam giác ABH vuông tại H ta có:

HA2 + HB2 = AB2

HA2 = AB2 - HB2

        = 52  - 42 = 9

=> AH = \(\sqrt{9}=3cm\)

b) Xét tam giác DBH và tam giác ECH có:

BH = CH (chứng minh ở câu a)

Góc D = góc E = 90o

Góc B = góc C

Vậy tam giác DBH = tam giác ECH (c,huyền - g.nhọn)

=> HD = HE (2 cạnh tương ứng)

=> Tam giác HDE cân (tại H)

c) Vì tam giác DHB vuông tại D nên:

BH là cạnh lớn nhất (c.huyền)

=> BH > DH mà BH = CH

=> CH > DH

d) Vì GH = 1/3AH => G là trọng tâm của tam giác ABC

=> BN là đường trung tuyến 

=> NA = NC

e) Ta có: GH = 1/3AH = 1/3 . 3 = 1 cm

Áp dụng định lí Py Ta Go cho tam giác GBH vuông tại H ta có:

HG2 + HB2 = BG2

BG2 = 12 + 42 = 17

=> BG = \(\sqrt{17}cm\)

Ta lại có: BG = 2/3 BN

=> BN = \(\frac{BG}{\frac{2}{3}}=\sqrt{17}.\frac{3}{2}=\frac{3\sqrt{17}}{2}cm\)

 

 

 

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

\(\widehat{ADB}\) chung

Do đó: ΔHAD\(\sim\)ΔABD

b: BD=25cm

AH=12cm

c: XétΔABD vuông tại A có AH là đường cao

nên \(AH^2=HD\cdot HB\)