Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
a,⇒C,A,Da,⇒C,A,D thẳngthẳng hàng⇒−−→CA+−−→CD=→0⇔−−→CA=−−→DChàng⇒CA→+CD→=0→⇔CA→=DC→
D(x;y)⇒−−→CA=−−→DC⇔{−1−x=2−2−y=0D(x;y)⇒CA→=DC→⇔{−1−x=2−2−y=0⇔{x=−1y=−2⇔{x=−1y=−2⇔{x=−3y=−2⇔{x=−3y=−2⇒D(−3;−2)⇒D(−3;−2)
b,E(xo;yo)⇒−−→AE=−−→BCb,E(xo;yo)⇒AE→=BC→⇔{xo−1=−3yo+2=−5⇔{xo−1=−3yo+2=−5⇔{xo=−2yo=−7⇔{xo=−2yo=−7⇒E(−2;−7)⇒E(−2;−7)
c,⇒G(xG;yG)⇒⎧⎪ ⎪⎨⎪ ⎪⎩xG=1+2−13=23yG=−2+3−23=−13c,⇒G(xG;yG)⇒{xG=1+2−13=23yG=−2+3−23=−13⇒G(23;−13)
bạn ơi bạn có thể viết rõ câu trả lời hơn được không vì nó khó hiểu quá
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-1\right)\\\overrightarrow{BC}=\left(-3;4\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{u}=3\overrightarrow{AB}+2\overrightarrow{BC}=\left(-3;5\right)\)
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(1-x;5-y\right)\)
Để ABCD là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x=1\\5-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=6\end{matrix}\right.\)
\(\Rightarrow D\left(0;6\right)\)
a: A(2;4); B(1;0); C(2;2)
vecto AB=(-1;-4)
vecto DC=(2-x;2-y)
Vì ABCD là hình bình hành nên vecto AB=vecto DC
=>2-x=-1 và 2-y=-4
=>x=3 và y=6
c: N đối xứng B qua C
=>x+1=4 và y+0=4
=>x=3 và y=4