Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 6a=x;2b=y;3c=z=>x+y+z=11
áp dụng bất đẳng thức Schwarts ta có:\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+y+z+3}=\frac{9}{14}\)
\(\Leftrightarrow\frac{28}{x+1}+\frac{28}{y+1}+\frac{28}{z+1}\ge\frac{28.9}{14}=18\)
\(\Leftrightarrow\frac{28}{x+1}-1+\frac{28}{y+1}-1+\frac{28}{z+1}-1\ge18-1-1-1=15\)
\(\Leftrightarrow\frac{27-x}{x+1}+\frac{27-y}{y+1}+\frac{27-z}{z+1}\ge15\)
\(\Leftrightarrow\frac{11-x+16}{x+1}+\frac{11-y+16}{y+1}+\frac{11-z+16}{z+1}\ge15\)
\(\Leftrightarrow\frac{y+z+16}{x+1}+\frac{z+x+16}{y+1}+\frac{x+y+16}{z+1}\ge15\)
\(\Leftrightarrow\frac{2b+3c+16}{6a+1}+\frac{6a+3c+16}{2b+1}+\frac{6a+2b+16}{3c+1}\ge15\)
=>đpcm
dấu "=" xảy ra khi \(a=\frac{11}{18};b=\frac{11}{6};c=\frac{11}{9}\)
A = 4acx + 4bcx + 4ax + 4bx ( đã sửa '-' )
= 4x( ac + bc + a + b )
= 4x[ c( a + b ) + ( a + b ) ]
= 4x( a + b )( c + 1 )
B = ax - bx + cx - 3a + 3b - 3c
= x( a - b + c ) - 3( a - b + c )
= ( a - b + c )( x - 3 )
C = 2ax - bx + 3cx - 2a + b - 3c
= x( 2a - b + 3c ) - ( 2a - b + 3c )
= ( 2a - b + 3c )( x - 1 )
D = ax - bx - 2cx - 2a + 2b + 4c
= x( a - b - 2c ) - 2( a - b - 2c )
= ( a - b - 2c )( x - 2 )
E = 3ax2 + 3bx2 + ax + bx + 5a + 5b
= 3x2( a + b ) + x( a + b ) + 5( a + b )
= ( a + b )( 3x2 + x + 5 )
F = ax2 - bx2 - 2ax + 2bx - 3a + 3b
= x2( a - b ) - 2x( a - b ) - 3( a - b )
= ( a - b )( x2 - 2x - 3 )
= ( a - b )( x2 + x - 3x - 3 )
= ( a - b )[ x( x + 1 ) - 3( x + 1 ) ]
= ( a - b )( x + 1 )( x - 3 )