Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a-b=7\)
\(\Rightarrow b-a=-7\)
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)
\(B=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b+\left(b-a\right)}{2b-7}\)
\(B=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\)
\(B=1+1\)
\(B=2\)
Vậy \(B=2\)
Tham khảo nhé~
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)
\(=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b-\left(a-b\right)}{2b-7}\)
\(=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\) (vì a - b = 7)
\(=1+1=2\)
\(\frac{1+2a}{15}=\frac{7-3a}{20}\Leftrightarrow20\left(1+2a\right)=15\left(7-3a\right)\Rightarrow a=1.\)
\(\frac{1+2a}{15}=\frac{3b}{23+7a}\) Thay a = 1 vào
\(\frac{1}{5}=\frac{b}{10}\Rightarrow b=2\)
mk không bít
mk mới lớp 7 thui
sorry nha
cảm ơn nhé
k mk nha
k mk mk k lại
\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)
\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)
\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)
Dấu = xảy ra khi ....
\(2a^2+b^2=3ab\Leftrightarrow2a^2-3ab+b^2=0\Leftrightarrow\left(2a-b\right)\left(a-b\right)=0\)
\(\Leftrightarrow a-b=0\left(2a-b>0\right)\Leftrightarrow a=b\)
\(P=\frac{3a^2+2a^2}{5a^2-3a^2}=\frac{5a^2}{2a^2}=\frac{5}{2}\)
\(P=\frac{3a+7+2a-b-7}{3a+7}-\frac{2b-7+b-2a+7}{2b-7}\)
mà 2a-b=7 hay b-2a=-7 nên ta có
\(P=1+\frac{7-7}{3a+7}-1-\frac{-7+7}{2b-7}=1+0-1-0=0\)