Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử 0<a1<a2<a3<...<a1000<a1<a2<a3<...<a100
Vậy a1≥1;a2≥2;....;a100≥100a1≥1;a2≥2;....;a100≥100suy ra 1/a1+1/a2+...+1/a100≤1+12+13+...+11001a1+1a2+...+1a100≤1+1/2+1/3+...+1/100
⇒1/a1+1/a2+...+1/a100<1+1/2+1/2+...+1/2(99 phân số 1/2)
⇒1/a1+1/a2+...+1/a100<1/2.(2+99)=1/2.101=101/2trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử \(0< a_1< a_2< a_3< ...< a_{100}\)
Vậy \(a_1\ge1;a_2\ge2;....;a_{100}\ge100\)suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(99 phân số \(\frac{1}{2}\))
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< \frac{1}{2}.\left(2+99\right)=\frac{1}{2}.101=\frac{101}{2}\)trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh
Giả sử a1;a2;a3;a4;........;a50a1;a2;a3;a4;........;a50 là 50 số tự nhân khác nhau và 0<a1<a2<a3<........<a500<a1<a2<a3<........<a50
⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150
<1+12+12+....+12=1+492=512<1+12+12+....+12=1+492=512 (mâu thuẫn giả thiết)
⇒⇒Trong 50 số trên có ít nhất 2 số bằng nhau
Giả sử trong 100 số đó không có số nào bằng nhau a1 > a2>a3>.....a100
Mà a1,a2,a3,...,a100 thuộc Z
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=\frac{101}{2}\)(vôlý)
Vậy có ít nhất 2 số bằng nhau trong dãy số trên
Gọi dãy số 5 chứ số tự nhiên liên tiếp là x; x+1; x+2; x+3; x+4
Giả sử x chia hết cho 5 => ĐPCM
Giả sử x không chia hết cho 5 tức là x chia 5 dư tối đa là 4 tức là x+4 tối đa sẽ chia hết cho5
Vậy dãy 5 số tự nhiên liên tiếp sẽ chia hết cho 5