K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

Xét tổng 2 số:

\(\left(2a+b-2\sqrt{cd}\right)+\left(2c+d-2\sqrt{ab}\right)=\left(a+b-2\sqrt{ab}\right)+\left(c+d-2\sqrt{cd}\right)+a+c\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)+\left(c-\sqrt{cd}+d-\sqrt{cd}\right)+a+c\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+a+c\) > 0

Do đó, tồn tại 1 số dương trong 2 số \(2a+b-2\sqrt{cd}\)\(2c+d-2\sqrt{ab}\)(đpcm)

 

NV
13 tháng 8 2021

\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2019}\Rightarrow\dfrac{a+b}{ab}=\dfrac{1}{2019}\Rightarrow2019=\dfrac{ab}{a+b}\)

\(\dfrac{1}{a}=\dfrac{1}{2019}-\dfrac{1}{b}=\dfrac{b-2019}{2019b}\Rightarrow b-2019=\dfrac{2019b}{a}\)

\(\dfrac{1}{b}=\dfrac{1}{2019}-\dfrac{1}{a}=\dfrac{a-2019}{2019a}\Rightarrow a-2019=\dfrac{2019a}{b}\)

\(\Rightarrow\sqrt{a-2019}+\sqrt{b-2019}=\sqrt{\dfrac{2019a}{b}}+\sqrt{\dfrac{2019b}{a}}=\dfrac{\sqrt{2019}\left(a+b\right)}{\sqrt{ab}}=\sqrt{\dfrac{ab}{a+b}}.\dfrac{a+b}{\sqrt{ab}}=\sqrt{a+b}\)

5 tháng 7 2016

Ta có : \(x=2a+b-2\sqrt{cd};y=2b+c-2\sqrt{ad};z=2c+d-2\sqrt{ab};t=2d+a-2\sqrt{bc}\)

\(\Rightarrow x+z=2a+b-2\sqrt{cd}+2c+d-2\sqrt{ab}=\left(a-2\sqrt{ab}+b\right)+\left(c-2\sqrt{cd}+d\right)+a+c=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+a+c>0\)

\(\Rightarrow x+z>0\) => Một trong hai số x và z phải có ít nhất một số dương (1) . Thật vậy , giả sử x<0 , z<0 => x+z<0 => vô lí.

Tương tự ta cũng có : \(y+t=\left(\sqrt{a}-\sqrt{d}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+b+d>0\) \(\Rightarrow y+t>0\) => Một trong hai số y và t phải có ít nhất một số dương (2)

Từ (1) và (2) ta có điều phải chứng minh.