Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2015 số đã cho không có 2 số nào bằng nhau
Không mất tính tổng quát giải sử \(a_1< a_2< a_3< ......< a_{2015}\)
Vì \(a_1;a_2;a_3;....a_{2015}\)đều là các số nguyên dương nên \(a_1\ge1;a_2\ge2;....;a_{2016}\ge2016\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+....+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+....+\left(\frac{1}{1024}+\frac{1}{1025}+\frac{1}{1026}+...+\frac{1}{2015}\right)\)
\(< 1+\frac{1}{2}\cdot2+\frac{1}{4}\cdot4+\frac{1}{8}\cdot8+....+\frac{1}{512}\cdot512+\frac{1}{1024}\cdot993\)
\(< 1+\frac{1}{2}\cdot2+\frac{1}{2^2}\cdot2^2+\frac{1}{2^3}\cdot2^3+......+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)
Trái với giải thiết. Do đó điều giả sử sai
Vậy trong 2015 số đã cho có ít nhất 2 số bằng nhau
a) Giả sử không có 2 số nào bằng nhau trong các số nguyên dương đẫ cho.
Không mất tính tổng quát ta giả sử: \(a1< a2< a3< a4< ...< a100\)
Nên : \(a1\ge1;a2\ge2;a3\ge3;...;a100\ge100\)
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
Mặt khác, ta có : \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< \frac{1}{1}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+99.\frac{1}{2}=\frac{101}{2}\)
( \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)có 99 phân số 1/2 )
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{101}{2}\)trái với đề bài ra là \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\ge\frac{101}{2}\)
Vậy tồn tại trong 100 số đã cho ít nhất 2 số bằng nhau ( điều phải chứng minh ).
b) Giả sử trong 100 số trên chỉ tồn tại 2 số bằng nhau ( đã chứng minh 2 số bằng nhau ở phần a)
Không mất tính tổng quát, ta giả sử:
b) Làm tiếp : Giả sử a1=a2.
Nên : \(a1=a2>a3>a4>...>a100\)( áp dụng theo phần a)
\(\Rightarrow a1=a2\ge1;a3\ge2;a4\ge3;...;a100\ge99\)
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{2}{a1}+\frac{1}{a3}+...+\frac{1}{a100}=\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}\)
Mặt khác, ta có :\(\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}< 2+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}=\frac{5}{2}+\frac{97}{3}=\frac{209}{6}\)
( \(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}< \frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)có 97 phân số 1/3 )
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{209}{6}< \frac{303}{6}=\frac{101}{2}\)trái với đề bài
Tương tự giả sử lấy bất kỳ 2 số bằng nhau khác tổng \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\)vẫn nhỏ hơn 101/2
Vậy tồn tại trong 100 số đã cho có ít nhất 3 số bằng nhau ( điều phải chứng minh).
Câu hỏi của Vu Kim Ngan - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Giả sử có ít nhất 2 trong 2015 số nguyên dương đã cho không có số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< ...< a_{2015}\)
=> \(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)
=>\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}\le1+\frac{1}{2}+...+\frac{1}{2015}\left(1\right)\)
Ta lại có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+\frac{2014}{2}=1008\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1008\), trái với giả thiết
Vậy có ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau
Giả sử trong 2019 số trên không có 2 số nào nào bằng nhau
Không mất tính tổng quát : g/s : \(a_{2019}>...>a_2>a_1\ge1\)
=> \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2019}^2}\le\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}=2-\frac{1}{2019}< 2\)Vô lí với giả thiết
Vậy điều giả sử là sai
Vậy trong 2019 số tồn tại ít nhất 2 số bằng nhau