Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{10x}{5}+\frac{5y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{6x}{5}+\frac{4x}{5}+\frac{y}{5}+\frac{4y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\left(\frac{6x}{5}+\frac{30}{x}\right)+\left(\frac{4x}{5}+\frac{4y}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)
Áp dụng bất đẳng thức cô-si cho hai số không âm
\(\frac{6x}{5}+\frac{30}{x}\ge2\sqrt{\frac{6x}{5}.\frac{30}{x}}=2\sqrt{36}=2.6=12\) (1)
\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\) (2)
Theo đề \(x+y\ge10\) suy ra
\(\frac{4x}{5}+\frac{4y}{5}=\frac{4\left(x+y\right)}{5}\ge\frac{4.10}{5}=8\) (2)
Cộng (1); (2) ; (3) vế theo vế ta được:
\(\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4x}{5}+\frac{4y}{5}\ge12+2+8=22\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{6x}{5}=\frac{30}{x}\\\frac{y}{5}=\frac{5}{y}\end{cases}\Rightarrow\hept{\begin{cases}x^2=25\\y^2=25\end{cases}}}\)
Vì x;y dương nên (x;y) = (5;5)
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(\Leftrightarrow P=0,8\left(x+y\right)+\left(1,2x+\frac{30}{x}\right)+\left(0,2y+\frac{5}{y}\right)\)
Áp dụng BĐT AM-GM ta có:
\(P\ge0,8\left(x+y\right)+2.\sqrt{1,2x.\frac{30}{x}}+2.\sqrt{0,2y.\frac{5}{y}}=8+12+2=22\)
Dấu " = " xảy ra <=> x=y=5
Vậy \(P_{min}=22\Leftrightarrow x=y=5\)
\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra tại x=y=1/2
Có vẻ kết quả bị sai Huy ơi.
Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
ta có
\(A^2=\left(x+2y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)=25\left(\text{ BĐT Bunhia}\right)\)
vậy ta có \(A\le5\)hay GTLN của A là 5