Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai
Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)
Khi đó \(x< y\) nhưng \(z< y\)
\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)
\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)
\(b\left(a+c\right)=ba+bc\left(3\right)\)
\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)
\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)
\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
\(\Rightarrow x< y< z\)
Ta có: x + y = x : y
=> x = x .y + y = y ( x+ 1 ) (1)
=> x : y = y (x + 1) : y = x - 1
Do đó, ta có: \(\begin{cases}x:y=x+1\\x:y=x-y\end{cases}\)
=> x - 1 = x + y
=> -1 = y
=> y = -1
Thay -1 vào (1) ta được:
x = -1(x+1)
=> x = -x . -1
=> 2x = -1
=> x = \(\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
y = 1
Giúp mình với !!!!!!!
Tìm 2 số hữu tỉ x,y biết :
x - 2y = 2(x +y ) và x - y =\(\dfrac{x}{y}\) (y ≠ 0 )
\(x-2y=2x+2y\\ \Rightarrow x=-4y\left(1\right)\\ \Rightarrow\dfrac{x}{y}=-4\\ \Rightarrow x-y=-4\Rightarrow x=-4+y\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow-4+y=-4y\\ \Rightarrow-5y=-4\Rightarrow y=\dfrac{4}{5}\\ \Rightarrow x=-4\cdot\dfrac{4}{5}=-\dfrac{16}{5}\)
Bài 1:
Vì \(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)
Xét tích; a.(b+d)=ab+ad (2)
b.(a+c)=ba+bc (3)
Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .
Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)
Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)
Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
hay x<y<z
Bài 2:
a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)
b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)
c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)
Bài 3:
Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))
=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)
Vậy A\(>\dfrac{1}{5}\)
Bài 4:
M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp
M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)
Bài 5:
Ta dùng phương pháp phản chứng:
Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)
=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)
Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)
Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
C