K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

Ta có: \(a^3+b^3+3\text{a}b-1\)

\(\left(a+b\right)^3-3ab\left(a+b\right)+3ab-1\)

\(=\left[\left(a+b\right)^3-1\right]-3ab\left(a+b-1\right)\)

\(=\left(a+b-1\right)\left[\left(a+b\right)^2+\left(a+b\right)+1-3ab\right]\)

\(=\left(a+b-1\right)\left(a^2+b^2-ab+a+b+1\right)\)

Xét:  \(a^3+b^3+3\text{a}b-1\) là số nguyên tố với a; b là số nguyên dương 

+) Th1:  a + b - 1 = 1 và \(a^2+b^2-ab+a+b+1\) là số nguyên tố 

<=> a + b = 2 và  7 - 3ab là số nguyên tố 

Vì a; b nguyên dương  nên  a + b = 2 => a = b = 1 => 7 - 3ab = 7 - 3 = 4 không là số nguyên tố

=> Loại

+) Th2:  \(a^2+b^2-ab+a+b+1\) = 1 và a + b - 1 là số nguyên tố 

Ta có: \(a^2+b^2-ab+a+b+1=1\)

<=> \(a^2+\left(1-b\right)a+b^2+b=0\)

<=> \(a^2+2a\frac{\left(1-b\right)}{2}+\frac{\left(1-b\right)^2}{4}-\frac{1-2b+b^2}{4}+b^2+b=0\)

<=> \(\left(a+\frac{1-b}{2}\right)^2+\frac{3b^2+6b-1}{4}=0\)(1)

Với b nguyên dương ta có: \(b\ge1\Rightarrow\frac{3b^2+6b-1}{4}\ge2>0\)

=> (1) vô nghiệm 

=> Loại 

Vậy không tồn tại a; b nguyên dương

a;b;c là số nguyên dương =>3abc>0

=>a^3>b^3=> a>b

và a^3>c^3=>a>c

=>2a>b+c

=>4a>2.(b+c)=a^2

=>4>a

2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2

vì b;c<2=a và b;c là các số nguyên dương =>b=c=1

vậy a=2;b=1;c=1

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0

a: Gọi hai số cần tìm là 2k;2k+2

Theo đề, ta có:

\(\left(2k+2\right)^3-8k^3=2012\)

\(\Leftrightarrow24k^2+24k+8=2012\)

\(\Leftrightarrow24k^2+24k-2004=0\)

\(\Leftrightarrow2k^2+2k-167=0\)

=>Sai đề rồi bạn, vì phương trình này ko có nghiệm nguyên

d: \(a^3+b=14\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=14\)

=>ab=-1

\(a^2+b^2=\left(a+b\right)^2-2ab=2^2-2\cdot\left(-1\right)=4\)

\(\left(a^3+b^3\right)\left(a^2+b^2\right)=56\)

\(\Leftrightarrow a^5+a^3b^2+a^2b^3+b^5=56\)

\(\Leftrightarrow a^5+b^5+a^2b^2\left(a+b\right)=56\)

\(\Leftrightarrow a^5+b^5=54\)

25 tháng 7 2020

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)