K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Cách khác:

Đặt \(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)

\(A=\left(1+\dfrac{a+b}{a}\right)\left(1+\dfrac{a+b}{b}\right)\)

\(A=\left(2+\dfrac{b}{a}\right)\left(2+\dfrac{a}{b}\right)\)

\(A=4+2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+1\)

\(A\ge4+2\cdot2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}+1=9\left(AM-GM\right)\left(đpcm\right)\)

22 tháng 4 2018

( 1 + \(\dfrac{1}{a}\))\(\left(1+\dfrac{1}{b}\right)\) ≥ 9

Biến đổi VT Ta có : VT = \(\dfrac{a+1}{a}.\dfrac{b+1}{b}\)

= \(\dfrac{2a+b}{a}.\dfrac{2b+a}{b}\)

=\(\left(2+\dfrac{b}{a}\right)\left(2+\dfrac{a}{b}\right)\)

= 4 + \(\dfrac{2a}{b}+\dfrac{2b}{a}+\dfrac{b}{a}.\dfrac{a}{b}\)

= 5 + 2( \(\dfrac{a}{b}+\dfrac{b}{a}\) ) ( *)

Áp dụng BĐT : \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2( x > 0 ; y > 0) ( ** )

Từ ( * ; **) ⇒ 5 + 2( \(\dfrac{a}{b}+\dfrac{b}{a}\) ) ≥ 5 + 4 = 9 ( đpcm )

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

12 tháng 5 2023

Đặt \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(P=\dfrac{\left(abc\right)^2}{a^3\left(b+c\right)}+\dfrac{\left(abc\right)^2}{b^3\left(c+a\right)}+\dfrac{\left(abc\right)^2}{c^3\left(a+b\right)}\)

\(P=\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ca\right)^2}{b\left(c+a\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)

\(P\ge\dfrac{\left(bc+ca+ab\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\) (BĐT B.C.S)

\(=\dfrac{ab+bc+ca}{2}\) \(\ge\dfrac{3\sqrt[3]{abbcca}}{2}=\dfrac{3}{2}\) (do \(abc=1\)).

ĐTXR \(\Leftrightarrow a=b=c=1\)

NV
17 tháng 4 2021

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là a và b

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow2\left(ab+1\right)\ge\left(a+1\right)\left(b+1\right)\)

\(\Rightarrow\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{2}{2\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(\dfrac{1}{c}+1\right)\left(c+1\right)}=\dfrac{c}{\left(c+1\right)^2}\)

Lại có:

\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(\dfrac{a}{b}+1\right)}+\dfrac{1}{\left(ab+1\right)\left(\dfrac{b}{a}+1\right)}=\dfrac{1}{ab+1}\)

\(\Rightarrow P\ge\dfrac{1}{ab+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}=\dfrac{1}{\dfrac{1}{c}+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}\)

\(\Rightarrow P\ge\dfrac{c}{c+1}+\dfrac{c+1}{\left(c+1\right)^2}=\dfrac{c\left(c+1\right)+c+1}{\left(c+1\right)^2}=\dfrac{\left(c+1\right)^2}{\left(c+1\right)^2}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

17 tháng 4 2021

Em cảm ơn ạ

27 tháng 2 2021

Đặt A = \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)

A = \(\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\)(Vì a + b = 1)

A = \(\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)

A = \(4+\frac{2a}{b}+\frac{2b}{a}+1\)

A = \(5+2\left(\frac{a}{b}+\frac{b}{a}\right)\)

Vì a, b dương nên áp dụng BĐT Cô - si cho 2 số dương, ta được :

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2.1=2\)

\(\Leftrightarrow2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4\)

\(\Leftrightarrow5+2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4+5\)

\(\Leftrightarrow A\ge9\)

Dấu bằng xảy ra \(\Leftrightarrow\)a = b > 0

Vậy \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)với a, b là các số dương và a + b = 1

27 tháng 2 2021

Tớ quên. Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b>0\\a+b=1\end{cases}}\)

\(\Leftrightarrow a=b=\frac{1}{2}\)

NV
10 tháng 6 2021

Bài này đã có ở đây:

Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24