Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
a = (2m - 1)2 = 4m2 - 4m + 1
b = (2m + 1)^2 = 4m2 + 4m + 1
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1)
Vì m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64
Mà A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3
Mà 3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192
Gọi 4 số tự nhiên liên tiếp đó là : n; n + 1; n + 2; n + 3
ta có
n(n + 1)(n + 2)(n + 3) + 1
= n(n + 3)(n + 1)(n + 2) + 1
= (n² + 3n)(n² + 3n + 2) + 1
= (n² + 3n)² + 2(n² + 3n) + 1
= (n² + 3n + 1)² (đpcm)
Tại sao chúng ta cứ phải chứng minh điều mà ai nhìn vào cũng thấy???
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm