Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm như chắc là sai:vvv
Điều kiện: b\(\ne0\)
Theo đề bài ta có: a-b=2(a+b)
<=>a-b=2a+2b
<=>a-2a=2b+b
<=> -a=3b
<=>a=-3b
=> ab=(-3b).b=-3b2
Ta có: \(\dfrac{a}{b}=\left(a-b\right)\Leftrightarrow a=\left(a-b\right)b=ab-b^2=-3b^2-b^2=-4b^2\)
<=> -3b=-4b2
<=> \(-3b+4b^2=0\Leftrightarrow b\left(4b-3\right)=0\)
=> \(\Leftrightarrow\left[{}\begin{matrix}b=0\left(loai\right)\\4b-3=0\end{matrix}\right.\)
=> \(b=\dfrac{3}{4}\Rightarrow a=-3.\dfrac{3}{4}=-\dfrac{9}{4}\)
Vậy...
a/ \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\a+c=-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\2\left(a+b+c\right)=-8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\\left(a+b+c\right)=-4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=-9\\a=6\\b=-1\end{matrix}\right.\) (TM)
b/ \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
\(\Rightarrow a^2b^2c^2=36\)
=> \(\left[{}\begin{matrix}abc=6\\abc=-6\end{matrix}\right.\)
TH1 : abc = - 6
Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=3\\a=1\\b=-2\end{matrix}\right.\) (TM)
TH2 : abc = 6
Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=-3\\a=-1\\b=2\end{matrix}\right.\) (TM)