Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hiệu là :
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)\(\left(1\right)\)
Lại có tích là :
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}.\frac{1}{n+1}\)
Vậy hiệu của chúng bằng tích của chúng
Chúc bạn học tốt ~
Ta có : 1/n-1/n+1=n+1/n.(n+1)-n/n.(n+1)=1/n.(n+1)
1/n.1/n+1=1/n(n+1)
=> hiệu của chúng = tích của chúng
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)
Vậy \(\frac{1}{n};\frac{1}{n+1}\)có hiệu và tích bằng nhau
\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)
\(=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)
Cho mik xin tk
\(\frac{1}{n}\)- \(\frac{1}{n+1}\)= \(\frac{n+1}{n\left(n+1\right)}\)- \(\frac{n}{n\left(n-1\right)}\)=\(\frac{n+1-n}{n\left(n+1\right)}\)= \(\frac{1}{n\left(n+1\right)}\)
=> \(\frac{1}{n\left(n+1\right)}\)= \(\frac{1}{n}\). \(\frac{1}{n+1}\)
\(\frac{1}{n}\times\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)
\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)(Luôn đúng)
mọi người hộ tớ nhé