Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Chứng minh tứ giác BCID nội tiếp ?
Ta có: ^BCE = ^BAE; ^BDF = ^BAF. Do ^BAE + ^BAF = 1800 nên ^BCE + ^BDF = 1800
=> ^BCI + ^BDI = 3600 - ^BCE - ^BDF = 1800 => Tứ giác BCID nội tiếp (đpcm).
+) Chứng minh IA là phân giác góc MIN ?
Gọi đường thẳng AB cắt CD tại J. Ta thấy: JC là tiếp tuyến từ điểm J tới (O), JAB là cát tuyến của (O)
Suy ra JC2 = JA.JB (Hệ thức lượng đường tròn). Tương tự JD2 = JA.JB
=> JC = JD. Áp dụng hệ quả ĐL Thales ta có \(\frac{AM}{JC}=\frac{AN}{JD}\left(=\frac{BA}{BJ}\right)\)(Vì EF // CD) => AM=AN (1)
Mặt khác: ^ADC = ^AFD = ^IDC, ^ACD = ^CEA = ^ICD. Từ đó \(\Delta\)CAD = \(\Delta\)CID (g.c.g)
=> CI = CA và DI = DA => CD là trung trực của AI => CD vuông góc AI
Mà MN // CD nên IA vuông góc MN (2)
Từ (1) và (2) suy ra IA là trung trực của MN => \(\Delta\)MIN cân tại I có IA là trung trực cạnh MN
=> IA đồng thời là phân giác của ^MIN (đpcm).