Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{PT }\left(d_1\right)\text{ giao }Ox:y=0\Leftrightarrow\dfrac{1}{2}x=-2\Leftrightarrow x=-4\Leftrightarrow A\left(-4;0\right)\Leftrightarrow OA=4\left(cm\right)\\ \text{PT }\left(d_2\right)\text{ giao }Ox:y=0\Leftrightarrow x=2\Leftrightarrow B\left(2;0\right)\Leftrightarrow OB=2\left(cm\right)\\ \Leftrightarrow AB=OA+OB=2+4=6\left(cm\right)\\ \text{PT hoành độ giao điểm: }\dfrac{1}{2}x+2=-x+2\Leftrightarrow x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\left(cm\right)\\ \Leftrightarrow S_{ABC}=\dfrac{1}{2}OC\cdot AB=\dfrac{1}{2}\cdot2\cdot6=6\left(cm^2\right)\\ \left\{{}\begin{matrix}AC=\sqrt{2^2+4^2}=2\sqrt{5}\left(pytago\right)\left(cm\right)\\BC=\sqrt{2^2+2^2}=2\sqrt{2}\left(pytago\right)\left(cm\right)\end{matrix}\right.\\ \Leftrightarrow P_{ABC}=AB+BC+CA=2\sqrt{5}+2\sqrt{2}+6\left(cm\right)\)
(d1): y = 1/2x + 2
và (d2): y = -x + 2
1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.
(d1) là đường thẳng đi qua hai điểm (0; 2) và (-4; 0)
(d2) là đường thẳng đi qua hai điểm (0; 2) và (2;0)
2. Tính chu vi và diện tích của tam giác ABC
(d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2
Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được:
\(AC=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}\)
\(BC=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)
Chu vi tam giác ABC : AC + BC + AB= 2√5 + 2√2 + 6
≈ 13,30
Diện tích tam giác ABC
\(\frac{1}{2}.OC.AB=\frac{1}{2}.2.6=6CM^2\)
NHÉ THAK NHÌU
a:
b: Tọa độ A là:
2x-2=-1/2x-2 và y=2x-2
=>x=0 và y=-2
Tọa độ B là:
y=0 và 2x-2=0
=>x=1 và y=0
Tọa độ C là:
y=0 và -1/2x-2=0
=>x=-4; y=0
i: A(0;-2); B(1;0); C(-4;0)
\(\overrightarrow{AB}=\left(1;2\right);\overrightarrow{AC}=\left(-4;2\right)\)
Vì 1*(-4)+2*2=0
nên ΔABC vuông tại A
ii: \(AB=\sqrt{1^2+2^2}=\sqrt{5}\)
\(AC=\sqrt{\left(-4\right)^2+2^2}=2\sqrt{5}\)
\(BC=\sqrt{5+20}=5\left(cm\right)\)
\(C_{ABC}=AB+AC+BC=5+3\sqrt{5}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot2\sqrt{5}\cdot\sqrt{5}=5\left(cm^2\right)\)
a, HS Tự làm
b, Tìm được C(–2; –3) là tọa độ giao điểm của d 1 và d 2
c, Kẻ OH ⊥ AB (CH ⊥ Ox)
S A B C = 1 2 C H . A B = 9 4 (đvdt)
A(-4;0)
B(2;0)
C(0;2)