K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

14 tháng 8 2019

Chọn A.

Ta có A(2;3;3); B(2;2;2)

Δ đi qua điểm A(2;3;3) và có vectơ chỉ phương  A B → = 0 ; - 1 ; 1

Vậy phương trình của ∆ là x = 2 y = 3 - t z = 3 - t

28 tháng 11 2018
AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Câu 2)

Giả sử tồn tại MP cố định đó. Gọi PTMP mà \((d_k)\) luôn đi qua là

\((P):a(x-3)+b(y+1)+c(z+1)=0\) $(1)$

Ta chỉ cần xác định được \(a,b,c\) nghĩa là đã chứng minh được sự tồn tại của mặt phẳng cố định đó.

\(d_k\in (P)\forall k\Rightarrow \overrightarrow{u_{d_k}}\perp \overrightarrow {n_P}\)

\(\Rightarrow a(k+1)+b(2k+3)+c(1-k)=0\) với mọi $k$

\(\Leftrightarrow k(a+2b-c)+(a+3b+c)=0\) với mọi $k$

\(\Leftrightarrow \left\{\begin{matrix} a+2b-c=0\\ a+3b+c=0\end{matrix}\right.\)

Từ đây ta suy ra \(a=\frac{-5b}{2}\)\(c=\frac{-b}{2}\)

Thay vào \((1)\) và triệt tiêu \(b\) (\(b\neq 0\) bởi vì nếu không thì \(a=c=0\) mặt phẳng không xác định được)

\(\Rightarrow (P): -5x+2y-z+16=0\)

\((d_k)\parallel (6x-y-3z-13=0(1),x-y+2z-3=0(2))\)

\(\Leftrightarrow \overrightarrow {u_{d_k}}\perp \overrightarrow {n_1},\overrightarrow{n_2}\)\(\Rightarrow \overrightarrow{u_{d_k}}\parallel[\overrightarrow{n_1},\overrightarrow{n_2}]\)

\(\overrightarrow{n_1}=(6,-1,-3);\overrightarrow{n_2}=(1,-1,2)\)

\(\Rightarrow \overrightarrow{u_{d_k}}\parallel(-5,-15,-5)\) hay \(\frac{k+1}{-5}=\frac{2k+3}{-15}=\frac{1-k}{-5}\Rightarrow k=0\)

AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Câu 1 mình đặt ẩn nhưng dài quá nhác viết, với lại mình thấy nó không hay và hiệu quả. Mình nghĩ với cách cho giá trị AB,CD cụ thể thế kia thì chắc chắn có cách nhanh gọn hơn. Nếu bạn có lời giải rồi thì post lên cho mình xem ké với.

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4 2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là 3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là 4 trong không gian với hệ tạo độ oxyz, cho...
Đọc tiếp

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4

2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là

3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là

4 trong không gian với hệ tạo độ oxyz, cho điểm M(2;3;-1) và đường thảng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\). tọa độ hình chiếu vuong góc của M trên( d)là

5 trong không gian oxyz, cho mp(p) 2x+3y+z-11=0. mặt cầu(S) có tâm I (1;-2;1) cà tiếp xúc zới (p) tại H . tọa độ điểm H là

6 pt mặt cầu có tâm I(1;2;3) và tiếp xúc với mp (oxz) là

7 trong khong gian với hệ dợ độ oxyz, mp(Q) có p x-2y+3z-1=0 trong các vecto sau, vecto nào ko phải là một vecto pháp tuyến của mp(Q)

A \(\overline{n}\)(3;-6;9) B (-2;4;-6) C(1;-4;9) D(1;-2-3)

3
NV
12 tháng 5 2020

6.

Mặt phẳng Oxz có pt: \(y=0\)

Khoảng cách từ I đến Oxz: \(d\left(I;Oxz\right)=\left|y_I\right|=2\)

\(\Rightarrow R=2\)

Phương trình mặt cầu:

\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=4\)

7.

Mặt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên cũng nhận các vecto có dạng \(\left(k;-2k;3k\right)\) là vtpt

Bạn có ghi nhầm đề bài ko nhỉ? Thế này thì cả C và D đều ko phải vecto pháp tuyến của (Q)

NV
12 tháng 5 2020

4.

Đường thẳng d nhận \(\left(1;-2;2\right)\) là 1 vtcp

Gọi (P) là mặt phẳng qua M và vuông góc d \(\Rightarrow\) (P) nhận \(\left(1;-2;2\right)\) là 1 vtpt

Phương trình (P): \(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)

\(\Leftrightarrow x-2y+2z+6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)

Tọa độ hình chiếu M' của M lên d là giao của d và (P) nên thỏa mãn:

\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\)

\(\Rightarrow M'\left(2;5;1\right)\)

5.

(P) nhận \(\left(2;3;1\right)\) là 1 vtpt

Gọi d là đường thẳng qua I và vuông góc (P)

\(\Rightarrow\) d nhận \(\left(2;3;1\right)\) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=-2+3t\\z=1+t\end{matrix}\right.\)

H là giao điểm của d và (P) nên tọa độ thỏa mãn:

\(2\left(1+2t\right)+3\left(-2+3t\right)+1+t-11=0\) \(\Rightarrow t=1\)

\(\Rightarrow H\left(3;1;2\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Bài 1:

Gọi tọa độ của \(A=(0,0,a)\)\(B=(m,n,p)\)

Vì $(P)$ vuông góc với $(d)$ nên \(\overrightarrow {n_P}=\overrightarrow {u_d}=(2,-1,1)\) kết hợp với $(P)$ chứa $A$ nên PTMP: \((P):2x-y+z-a=0\)

Ta có \(B\in (P)\Rightarrow 2m-n+p-a=0(1)\)

Mặt khác \(B\in (d')\Rightarrow \frac{m-1}{1}=\frac{n}{2}=\frac{p+2}{1}=t\Rightarrow \left\{\begin{matrix} m=t+1\\ n=2t\\ p=t-2\end{matrix}\right.\)

Thay vào $(1)$ ta thu được $t=a$

\(\Rightarrow AB=\sqrt{m^2+n^2+(p-a)^2}=\sqrt{(a+1)^2+(2a)^2+4}=\sqrt{5a^2+2a+5}\geq \frac{2\sqrt{30}}{5}\Leftrightarrow a=\frac{-1}{5}\)

Có nghĩa là để $AB$ min thì $a=\frac{-1}{5}$

Vậy PTMP: \(2x-y+z-\frac{1}{5}=0\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Câu 2:

Thay toạ độ $A$ và $B$ vào $(P)$ có \([3.1-4(-1)+2-1](3.3-4.0+1-1)>0\) nên $A,B$ cùng phía so với $(P)$

Lấy $A'$ đối xứng với $A$ qua $(P)$ \(\Rightarrow MA=MA'\Rightarrow MA+MB=MA'+MB\geq A'B\)

Do đó \((MA+MB)_{\min}\Leftrightarrow A',M,B\) thẳng hàng

Biểu thị $(d)$ là đường thẳng chứa đoạn $AA'$.

Hiển nhiên \((d)\perp (P)\Rightarrow \overrightarrow{u_d}=\overrightarrow {n_P}=(3,-4,1)\)

Kết hợp với $A\in (d)$ nên \(d:\frac{x-1}{3}=\frac{y+1}{-4}=\frac{z-2}{1}=t\)

Khi đó gọi \(H\equiv AA'\cap (P)\). Dễ có \(H=(\frac{1}{13},\frac{3}{13},\frac{22}{13})\)

Lại có $H$ là trung điểm của $AA'$ nên tọa độ của $A'$ là

\(\left\{\begin{matrix} x_{A'}=2x_H-x_A=\frac{-11}{13}\\ y_{A'}=2y_H-y_A=\frac{19}{13}\\ z_{A'}=2z_H-z_A=\frac{18}{13}\end{matrix}\right.\)

Khi đó ta dễ dàng viết được PTĐT chứa $A'B$ là \(\frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\)

Tọa độ của $M$ là nghiệm của hệ

\(\left\{\begin{matrix} \frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\\ 3x-4y+z-1=0\end{matrix}\right.\Rightarrow M(\frac{-213}{79},\frac{-171}{79},\frac{34}{79})\)

.

NV
28 tháng 3 2019

\(\left\{{}\begin{matrix}\overrightarrow{n_{\left(P1\right)}}=\left(1;-1;1\right)\\\overrightarrow{n_{\left(P2\right)}}=\left(3;2;-12\right)\end{matrix}\right.\) \(\Rightarrow\)\(\left[\overrightarrow{n_{\left(P1\right)}};\overrightarrow{n_{\left(P2\right)}}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)

Chọn \(\overrightarrow{n_{\left(p\right)}}=\left(2;3;1\right)\) là 1 vtpt của (P)

Phương trình (P): \(2x+3y+z=0\)

Câu 2:

\(\left\{{}\begin{matrix}\overrightarrow{u_d}=\left(2;1;1\right)\\\overrightarrow{u_{d'}}=\left(1;-2;1\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{u_d};\overrightarrow{u_{d'}}\right]=\left(3;-1;-5\right)\)

\(\Rightarrow\) Chọn \(\overrightarrow{n_{\alpha}}=\left(3;-1;-5\right)\) là một vtpt của \(\left(\alpha\right)\)

Phương trình \(\left(\alpha\right)\):

\(3\left(x-0\right)-1\left(y-1\right)-5\left(z-2\right)=0\)

\(\Leftrightarrow3x-y-5z+11=0\)

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5 2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ?? 3) Trong không gian Oxyz,...
Đọc tiếp

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5

2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ??

3) Trong không gian Oxyz, cho ba đường thẳng d :\(\frac{x}{1}\)=\(\frac{y}{1}\)=\(\frac{z+1}{-2}\); \(\Delta_1\): \(\frac{x-3}{2}\)=\(\frac{y}{1}\)=\(\frac{z-1}{1}\)\(\Delta_2\): \(\frac{x-1}{1}\)=\(\frac{y-2}{2}\)=\(\frac{z}{1}\). Đường thẳng \(\Delta\) vuông góc với d đồng thời cắt \(\Delta_1\), \(\Delta_2\) tương ứng tại H, K sao cho độ dài HK nhỏ nhất. Biết rằng \(\Delta\) có một vecto chỉ phương là \(\overrightarrow{u}\)=(h;k;1). Giá trị của h-k bằng

3
NV
6 tháng 5 2019

Câu 1:

\(\overrightarrow{MN}=\left(3;-1;-4\right)\Rightarrow\) pt mặt phẳng trung trực của MN:

\(3\left(x-\frac{7}{2}\right)-\left(y-\frac{1}{2}\right)-4\left(z-2\right)=0\Leftrightarrow3x-y-4z-2=0\)

\(\overrightarrow{PN}=\left(4;3;-1\right)\Rightarrow\) pt mp trung trực PN: \(4x+3y-z-7=0\)

\(\Rightarrow\) Phương trình đường thẳng giao tuyến của 2 mp trên: \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=t\end{matrix}\right.\)

\(\Rightarrow I\left(1+c;1-c;c\right)\) \(\Rightarrow\overrightarrow{NI}=\left(c-4;1-c;c\right)\)

\(d\left(I;\left(Oyz\right)\right)=IN\Rightarrow\left|1+c\right|=\sqrt{\left(c-4\right)^2+\left(1-c\right)^2+c^2}\)

\(\Leftrightarrow\left(c+1\right)^2=3c^2-10c+17\)

\(\Leftrightarrow2c^2-12c+16=0\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\)

\(a+b+c< 5\Rightarrow\left(1+c\right)+\left(1-c\right)+c< 5\Rightarrow c< 3\Rightarrow c=2\)

NV
6 tháng 5 2019

Câu 2:

Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1+2t\\y=t\\z=2-t\end{matrix}\right.\) \(\Rightarrow C\left(-1+2n;n;2-n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2n;n-3;1-n\right)\\\overrightarrow{AB}=\left(1;-1;-2\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(3n-7;-3n-1;3n-3\right)\)

\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(3n-7\right)^2+\left(-3n-1\right)^2+\left(3n-3\right)^2}=4\sqrt{2}\)

\(\Leftrightarrow27n^2-54n+27=0\Rightarrow n=1\)

\(\Rightarrow C\left(1;1;1\right)\Rightarrow m+n+p=3\)