Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi A là giao điểm d1 và d2 \(\Rightarrow\) pt hoành độ của A:
\(x+2=5-2x\Rightarrow3x=3\Rightarrow x=1\Rightarrow y=3\)
\(\Rightarrow A\left(1;3\right)\)
Thay tọa độ A vào pt d3: \(3=3.1\) (thỏa mãn) \(\Rightarrow A\in d_3\)
Vậy d1, d2, d3 đồng quy tại A
b/ Để \(d_1;d_2;\Delta\) đồng quy \(\Leftrightarrow\Delta\) đi qua A
\(\Leftrightarrow3=m.1+m-5\Rightarrow m=4\)
PT hoành độ giao điểm \((d_1)\) và \((d_2)\) là \(\dfrac{4}{3}x+1=x-1\Leftrightarrow x=-6\Leftrightarrow y=-7\Leftrightarrow A\left(-6;-7\right)\)
Để 3 đt đồng quy thì \(A\left(-6;-7\right)\in\left(d_3\right)\)
\(\Leftrightarrow-6m+m+3=-7\Leftrightarrow m=2\)
a: d//d1
=>m-2=-m và m+7<>2m-3
=>m=1
b: d trùng với d2
=>m-2=-m^2 và m+7=-2m+1
=>m=-2 và m^2+m-2=0
=>m=-2
d: d vuông góc d4
=>-1/6(m+3)(m-2)=-1
=>(m+3)(m-2)=6
=>m^2+m-6-6=0
=>m^2+m-12=0
=>m=-4 hoặc m=3
c: Thay y=1/3 vào d3, ta được:
-2/3x+5/3=1/3
=>-2/3x=-4/3
=>x=2
Thay x=2 và y=1/3 vào (d), ta được:
2(m-2)+m+7=1/3
=>3m+3=1/3
=>3m=-8/3
=>m=-8/9
a/ \(y=-2x-5\)
\(\Rightarrow\left\{{}\begin{matrix}2m=-2\\m-1=-5\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
b/ \(y=x-2\)
\(\Rightarrow2m.1=-1\Rightarrow m=-\frac{1}{2}\)
Bài 2:
Hệ phương trình tọa độ giao điểm M:
\(\left\{{}\begin{matrix}y=3x-2\\2y-x=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)
Bài 3:
Hệ pt tọa độ giao điểm A của d1 và d2:
\(\left\{{}\begin{matrix}y=2x-3\\y=x-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow d_3\) qua A
\(\Rightarrow\left(m-1\right).2+2=1\Rightarrow m=\frac{1}{2}\)
Gọi A là giao điểm d1 và d2
Pt hoành độ giao điểm d1 và d2: \(x+3=-x+1\Rightarrow x=-1\)
\(\Rightarrow A\left(-1;2\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d3 qua A
\(\Leftrightarrow2=\sqrt{2}.\left(-1\right)+\sqrt{2}+m\)
\(\Rightarrow m=2\)