Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB = CD
=> cung AB = cung CD
=> Cung AD = cung BC
=> AD = BC
=> tam giác AED = tam giác CEB => EA = EC và EB = ED
=> E chia AB và CD thành những đoạn thẳng đôi một bằng nhau
AB = CD
=> cung AB = cung CD
=> Cung AD = cung BC
=> AD = BC
=> tam giác AED = tam giác CEB => EA = EC và EB = ED
=> E chia AB và CD thành những đoạn thẳng đôi một bằng nhau
Xét hai tam giác OIH và OIK, ta có :
OI chung
OH = OK (chứng minh trên)
Suy ra: ∆ OIH = ∆ OIK (cạnh huyền, cạnh góc vuông)
Suy ra: IH = IK (1)
Lại có: HA = HB = (1/2).AB
KC = KD = (1/2).CD
Mà AB = CD nên HA = KC (2)
Từ (1) và (2) suy ra: IA = IC
Mà AB = CD nên IB = ID